Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Neuronatin regulates pancreatic β cell insulin content and secretion
Steven J. Millership, … , James Scott, Dominic J. Withers
Steven J. Millership, … , James Scott, Dominic J. Withers
Published June 4, 2018
Citation Information: J Clin Invest. 2018;128(8):3369-3381. https://doi.org/10.1172/JCI120115.
View: Text | PDF
Research Article Cell biology Genetics Article has an altmetric score of 27

Neuronatin regulates pancreatic β cell insulin content and secretion

  • Text
  • PDF
Abstract

Neuronatin (Nnat) is an imprinted gene implicated in human obesity and widely expressed in neuroendocrine and metabolic tissues in a hormone- and nutrient-sensitive manner. However, its molecular and cellular functions and precise role in organismal physiology remain only partly defined. Here we demonstrate that mice lacking Nnat globally or specifically in β cells display impaired glucose-stimulated insulin secretion leading to defective glucose handling under conditions of nutrient excess. In contrast, we report no evidence for any feeding or body weight phenotypes in global Nnat-null mice. At the molecular level neuronatin augments insulin signal peptide cleavage by binding to the signal peptidase complex and facilitates translocation of the nascent preprohormone. Loss of neuronatin expression in β cells therefore reduces insulin content and blunts glucose-stimulated insulin secretion. Nnat expression, in turn, is glucose-regulated. This mechanism therefore represents a novel site of nutrient-sensitive control of β cell function and whole-animal glucose homeostasis. These data also suggest a potential wider role for Nnat in the regulation of metabolism through the modulation of peptide processing events.

Authors

Steven J. Millership, Gabriela Da Silva Xavier, Agharul I. Choudhury, Sergio Bertazzo, Pauline Chabosseau, Silvia M.A. Pedroni, Elaine E. Irvine, Alex Montoya, Peter Faull, William R. Taylor, Julie Kerr-Conte, Francois Pattou, Jorge Ferrer, Mark Christian, Rosalind M. John, Mathieu Latreille, Ming Liu, Guy A. Rutter, James Scott, Dominic J. Withers

×

Figure 2

Insulin content and secretion in Nnat-deficient islets.

Options: View larger image (or click on image) Download as PowerPoint
Insulin content and secretion in Nnat-deficient islets.
(A) Insulin secr...
(A) Insulin secretion in static incubations of primary isolated islets from 10-week-old male Nnat+/–p and WT mice was determined in vitro under low-glucose (3 mM) and high-glucose (16.7 mM) conditions (n = 12 animals per group, 2-way ANOVA). (B) Insulin secretion in static incubations of primary isolated islets from 10-week-old male control and βcellKO-Nnat+/–p mice was determined as in A (n = 8 mice per genotype, both 3 independent experiments). (C and D) Mature insulin content (C) (n = 11 for WT and 8 for Nnat+/–p, Student’s t test) and proinsulin content (D) (n = 6 animals per group, Mann-Whitney U test) were quantified in isolated islets from 10-week-old male WT and Nnat+/–p mice and normalized to total protein. (E) Western blotting analysis of protein levels in primary isolated islets from 10-week-old male Nnat+/–p and WT mice. A representative blot of 2 independent experiments (n = 4 mice per genotype, Student’s t test) is shown. β-Tubulin was used as a loading control. Mean values for band intensities in multiple experiments quantified by densitometry are shown below each panel as well as in associated bar charts for insulin species, all expressed relative to WT samples (*P < 0.05, **P < 0.01, ***P < 0.001).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Posted by 18 X users
On 1 Facebook pages
Referenced in 1 Wikipedia pages
71 readers on Mendeley
See more details