Transient pulmonary neuroendocrine cell hyperplasia and non-neuroendocrine lung tumors develop in nitrosaminetreated hamsters, which we hypothesized might modulate epithelial cell phenotype by expressing gene(s) homologous to human chromosome 3p gene(s) deleted in small cell carcinoma of the lung (SCLC). We differentially screened a chromosome 3 library using nitrosamine-treated versus normal hamster lung cDNAs and identified hepatocyte growth factor-like/macrophage-stimulating protein (HGFL/MSP) in injured lung. HGFL/MSP mRNA is low to undetectable in human SCLC and carcinoid tumors, but the HGFL/MSP tyrosine kinase receptor, RON, is present and functional on many of these neuroendocrine tumors. In H835, a pulmonary carcinoid cell line, and H187, a SCLC cell line, HGFL/ MSP induced adhesion/flattening and apoptosis. Using viable cell counts to assess proliferation after 14 d of treatment with HGFL/MSP, there is growth inhibition of H835 but not H187. Nitrosamine-treated hamsters also demonstrate pulmonary neuroendocrine cell apoptosis in situ during the same time period as expression of the endogenous HGFL/ MSP gene, immediately preceding the spontaneous regression of neuroendocrine cell hyperplasia. These observations suggest that HGFL/MSP might regulate neuroendocrine cell survival during preneoplastic lung injury, which could influence the ultimate tumor cell phenotype.
C G Willett, D I Smith, V Shridhar, M H Wang, R L Emanuel, K Patidar, S A Graham, F Zhang, V Hatch, D J Sugarbaker, M E Sunday