Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis.
I Miyajima, … , J P Kinet, S J Galli
I Miyajima, … , J P Kinet, S J Galli
Published March 1, 1997
Citation Information: J Clin Invest. 1997;99(5):901-914. https://doi.org/10.1172/JCI119255.
View: Text | PDF
Research Article

Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis.

  • Text
  • PDF
Abstract

We attempted to elicit active anaphylaxis to ovalbumin, or passive IgE- or IgG1-dependent anaphylaxis, in mice lacking either the Fc epsilonRI alpha chain or the FcR gamma chain common to Fc epsilonRI and Fc gammaRI/III, or in mice lacking mast cells (KitW/ KitW-v mice), and compared the responses to those in the corresponding wild-type mice. We found that the FcR gamma chain is required for the death, as well as for most of the pathophysiological changes, associated with active anaphylaxis or IgE- or IgG1-dependent passive anaphylaxis. Moreover, some of the physiological changes associated with either active, or IgG1-dependent passive, anaphylactic responses were significantly greater in Fc epsilonRI alpha chain -/- mice than in the corresponding normal mice. Finally, while both KitW/KitW-v and congenic +/+ mice exhibited fatal active anaphylaxis, mast cell-deficient mice exhibited weaker physiological responses than the corresponding wild-type mice in both active and IgG1-dependent passive systemic anaphylaxis. Our findings strongly suggest that while IgE antibodies and Fc epsilonRI may influence the intensity and/or kinetics of some of the pathophysiological changes associated with active anaphylaxis in the mouse, the mortality associated with this response can be mediated largely by IgG1 antibodies and Fc gammaRIII.

Authors

I Miyajima, D Dombrowicz, T R Martin, J V Ravetch, J P Kinet, S J Galli

×

Full Text PDF

Download PDF (360.27 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts