Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Hyperinsulinemia is associated with altered insulin receptor mRNA splicing in muscle of the spontaneously obese diabetic rhesus monkey.
Z Huang, … , B C Hansen, A R Shuldiner
Z Huang, … , B C Hansen, A R Shuldiner
Published September 1, 1994
Citation Information: J Clin Invest. 1994;94(3):1289-1296. https://doi.org/10.1172/JCI117447.
View: Text | PDF
Research Article Article has an altmetric score of 11

Hyperinsulinemia is associated with altered insulin receptor mRNA splicing in muscle of the spontaneously obese diabetic rhesus monkey.

  • Text
  • PDF
Abstract

The human insulin receptor has two isoforms derived from alternative splicing of exon 11 of the insulin receptor gene. The type B (containing exon 11, or exon 11+) isoform binds insulin with twofold lower affinity than the type A (lacking exon 11, or exon 11-) isoform. In efforts to resolve the controversy over whether altered splicing is involved in the development of insulin resistance and non-insulin-dependent diabetes mellitus (NIDDM), the spontaneously obese diabetic rhesus monkey, a unique model that is extraordinarily similar to human NIDDM, was used. Cross-sectional studies of insulin receptor mRNA splicing variants in vastus lateralis muscle were performed on 19 rhesus monkeys. When monkeys were divided into four groups based upon the known stages of progression to NIDDM: normal (normoglycemic/normoinsulinemic), prediabetic (normoglycemic/hyperinsulinemic), early NIDDM (hyperglycemic/hyperinsulinemic), and late NIDDM (hyperglycemic/hypoinsulinemic), both hyperinsulinemic groups had significantly higher percentages of the exon 11- mRNA splicing variant compared to the normal (74.8 +/- 1.7 vs 59.0 +/- 2.3%; P < 0.005) and late NIDDM groups (74.8 +/- 1.7 vs 64.2 +/- 3.9%; P < 0.05). Our findings provide the first direct evidence linking hyperinsulinemia to alterations in insulin receptor mRNA splicing, and suggest that alterations of insulin receptor mRNA splicing in muscle is an early molecular marker that may play an important role in NIDDM.

Authors

Z Huang, N L Bodkin, H K Ortmeyer, B C Hansen, A R Shuldiner

×

Total citations by year

Year: 2025 2024 2021 2020 2018 2017 2016 2015 2014 2013 2011 2009 2008 2004 2003 2002 2000 1998 1997 1996 1995 Total
Citations: 2 1 2 1 1 2 1 2 3 1 1 4 1 1 1 2 2 1 1 2 1 33
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2004 (1)

Title and authors Publication Year
Peptide correction of age-related hormonal dysfunction of the pancreas in monkeys
ND Goncharova, AA Vengerin, VK Khavinson, BA Lapin
Bulletin of Experimental Biology and Medicine 2004

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Referenced in 1 policy sources
40 readers on Mendeley
See more details