Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (162)

Advertisement

Research Article Free access | 10.1172/JCI114542

Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages.

J C Mathison, G D Virca, E Wolfson, P S Tobias, K Glaser, and R J Ulevitch

Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Mathison, J. in: PubMed | Google Scholar

Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Virca, G. in: PubMed | Google Scholar

Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Wolfson, E. in: PubMed | Google Scholar

Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Tobias, P. in: PubMed | Google Scholar

Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Glaser, K. in: PubMed | Google Scholar

Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Ulevitch, R. in: PubMed | Google Scholar

Published April 1, 1990 - More info

Published in Volume 85, Issue 4 on April 1, 1990
J Clin Invest. 1990;85(4):1108–1118. https://doi.org/10.1172/JCI114542.
© 1990 The American Society for Clinical Investigation
Published April 1, 1990 - Version history
View PDF
Abstract

These experiments provide an explanation for the observation that two intravenous injections of lipopolysaccharide (LPS) spaced 5 h apart in rabbits cause tumor necrosis factor/cachectin (TNF) levels to rise in the blood only after the first LPS injection. Herein we show that treatment of elicited peritoneal exudate rabbit macrophages (PEM) with two doses of LPS given 9 h apart results in a marked reduction in TNF production by the second LPS exposure. This state of hyporesponsiveness is a result of adaptation to LPS, is induced by LPS concentrations that are 1,000-fold less than required to induce TNF production (picograms vs. nanograms), is characterized by a decrease in LPS-induced TNF mRNA without any change in TNF mRNA half-life, is not changed by including indomethacin in cultures, and is specific for LPS since LPS-adapted cells display a TNF response to heat-killed Staphylococcus aureus that is at least as good as that observed in control PEM.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1108
page 1108
icon of scanned page 1109
page 1109
icon of scanned page 1110
page 1110
icon of scanned page 1111
page 1111
icon of scanned page 1112
page 1112
icon of scanned page 1113
page 1113
icon of scanned page 1114
page 1114
icon of scanned page 1115
page 1115
icon of scanned page 1116
page 1116
icon of scanned page 1117
page 1117
icon of scanned page 1118
page 1118
Version history
  • Version 1 (April 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (162)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts