Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages.
J C Mathison, … , K Glaser, R J Ulevitch
J C Mathison, … , K Glaser, R J Ulevitch
Published April 1, 1990
Citation Information: J Clin Invest. 1990;85(4):1108-1118. https://doi.org/10.1172/JCI114542.
View: Text | PDF
Research Article

Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages.

  • Text
  • PDF
Abstract

These experiments provide an explanation for the observation that two intravenous injections of lipopolysaccharide (LPS) spaced 5 h apart in rabbits cause tumor necrosis factor/cachectin (TNF) levels to rise in the blood only after the first LPS injection. Herein we show that treatment of elicited peritoneal exudate rabbit macrophages (PEM) with two doses of LPS given 9 h apart results in a marked reduction in TNF production by the second LPS exposure. This state of hyporesponsiveness is a result of adaptation to LPS, is induced by LPS concentrations that are 1,000-fold less than required to induce TNF production (picograms vs. nanograms), is characterized by a decrease in LPS-induced TNF mRNA without any change in TNF mRNA half-life, is not changed by including indomethacin in cultures, and is specific for LPS since LPS-adapted cells display a TNF response to heat-killed Staphylococcus aureus that is at least as good as that observed in control PEM.

Authors

J C Mathison, G D Virca, E Wolfson, P S Tobias, K Glaser, R J Ulevitch

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 352 13
PDF 42 23
Scanned page 351 6
Citation downloads 45 0
Totals 790 42
Total Views 832
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts