Experiments were performed in nine conscious dogs to quantitate the contribution of systemic vascular autoregulation to the increases in total peripheral resistance (TPR) and mean arterial pressure (MAP) produced by angiotensin II (ANG II), arginine vasopressin (AVP), and norepinephrine (NE). We hypothesized that if autoregulatory vasoconstriction is significant, then the increase in TPR produced by vasoconstrictor infusion will be greater when MAP is controlled at hypertensive values than when the increase in pressure is prevented by controlling MAP at the animal's normotensive value. Each drug was infused at a dose sufficient to increase MAP by 50%. Then, a constant rate of vasoconstrictor infusion was maintained while MAP was controlled at hypertensive or normotensive levels for 15-min periods using a gravity reservoir connected to the left common carotid artery. During AVP infusion, TPR was significantly greater when MAP was controlled at hypertensive than at normotensive values. This autoregulatory-mediated vasoconstriction accounted for approximately three-fourths of the increase in MAP produced by AVP. No significant autoregulatory component was identified for the increases in TPR and MAP produced by ANG II or NE. We conclude that systemic vascular autoregulation is a powerful physiological property that contributes to the hemodynamic response to pressor doses of AVP.
P J Metting, K A Kostrzewski, P M Stein, B A Stoos, S L Britton
Title and authors | Publication | Year |
---|---|---|
Experimental Subarachnoid Hemorrhage Drives Catecholamine-Dependent Cardiac and Peripheral Microvascular Dysfunction
DD Dinh, D Lidington, JT Kroetsch, C Ng, H Zhang, SA Nedospasov, SP Heximer, SS Bolz |
Frontiers in physiology | 2020 |
The modified arterial reservoir: An update with consideration of asymptotic pressure ( P ∞ ) and zero-flow pressure ( P zf )
AD Hughes, KH Parker |
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2020 |
Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage
D Lidington, JT Kroetsch, SS Bolz |
Journal of Cerebral Blood Flow & Metabolism | 2017 |
Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries
S Hui, AS Levy, DL Slack, MJ Burnstein, L Errett, D Bonneau, D Latter, OD Rotstein, SS Bolz, D Lidington, J Voigtlaender-Bolz, A Cowart |
PloS one | 2015 |
Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness
D Lidington, R Schubert, SS Bolz |
Cardiovascular Research | 2012 |