Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Acute effects of insulin-like growth factor I on glucose and amino acid metabolism in the awake fasted rat. Comparison with insulin.
R Jacob, … , K D Fagin, R S Sherwin
R Jacob, … , K D Fagin, R S Sherwin
Published May 1, 1989
Citation Information: J Clin Invest. 1989;83(5):1717-1723. https://doi.org/10.1172/JCI114072.
View: Text | PDF
Research Article Article has an altmetric score of 3

Acute effects of insulin-like growth factor I on glucose and amino acid metabolism in the awake fasted rat. Comparison with insulin.

  • Text
  • PDF
Abstract

To elucidate the acute metabolic actions of insulin-like growth factor I (IGF-I), we administered a primed (250 micrograms/kg), continuous (5 micrograms/kg.min) infusion of human recombinant (Thr 59) IGF-I or saline to awake, chronically catheterized 24-h fasted rats for 90 min. IGF-I was also infused while maintaining euglycemia (glucose clamp technique) and its effects were compared to those of insulin. IGF-I infusion caused a twofold rise in IGF-I levels and a 75-85% decrease in plasma insulin. When IGF-I alone was given, plasma glucose fell by 30-40 mg/dl (P less than 0.005) due to a transient twofold increase (P less than 0.05) in glucose uptake; hepatic glucose production and plasma FFA levels remained unchanged. IGF-I infusion with maintenance of euglycemia produced a sustained rise in glucose uptake and a marked stimulation of [3-3H]glucose incorporation into tissue glycogen, but still failed to suppress glucose production and FFA levels. IGF-I also produced a generalized 30-40% reduction in plasma amino acids, regardless of whether or not hypoglycemia was prevented. This was associated with a decrease in leucine flux and a decline in the incorporation of [1-14C]leucine into muscle and liver protein (P less than 0.05). When insulin was infused in a dosage that mimicked the rise in glucose uptake seen with IGF-I, nearly identical changes in amino acid metabolism occurred. However, insulin suppressed glucose production by 65% and FFA levels by 40% (P less than 0.001). Furthermore, insulin was less effective than IGF-I in promoting glycogen synthesis. We conclude that (a) IGF-I produces hypoglycemia by selectively enhancing glucose uptake; (b) IGF-I is relatively ineffective in suppressing hepatic glucose production or FFA levels; and (c) IGF-I, like insulin, lowers circulating amino acids by reducing protein breakdown rather than by stimulating protein synthesis. Thus, IGF-I's metabolic actions in fasted rats are readily distinguished from insulin.

Authors

R Jacob, E Barrett, G Plewe, K D Fagin, R S Sherwin

×

Total citations by year

Year: 2024 2023 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 Total
Citations: 3 3 1 3 2 2 6 3 3 2 6 3 6 5 2 1 3 2 14 4 5 5 8 5 7 6 11 12 18 20 21 13 15 4 224
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2020 (3)

Title and authors Publication Year
Associations Between IGF1, IGFBP2 and TGFß3 Genes Polymorphisms and Growth Performance of Broiler Chicken Lines
B Hosnedlova, K Vernerova, R Kizek, R Bozzi, J Kadlec, V Curn, F Kouba, C Fernandez, V Machander, H Horna
Animals 2020
The Influence of Gestational Diabetes Mellitus upon the Selected Parameters of the Maternal and Fetal System of Insulin-Like Growth Factors (IGF-1, IGF-2, IGFBP1-3)—A Review and a Clinical Study
T Gęca, A Kwaśniewska
Journal of Clinical Medicine 2020
Mechanisms of putative IGF-I receptor resistance in active acromegaly
JA Janssen
Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society 2020

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
32 readers on Mendeley
See more details