Roles for both the tripeptide, GSH, and individual amino acids in modifying the cellular response to oxygen deprivation-induced injury have been suggested by prior work in kidney and other tissues, but the precise interrelationships have not been clearly defined. We have studied the effects of GSH, its component amino acids, and related compounds on the behavior of isolated renal proximal tubules in a well characterized model of hypoxic injury in vitro. GSH, the combination of cysteine, glutamate, and glycine and glycine alone, when present in the medium during 30 min hypoxia, a duration sufficient to produce extensive irreversible injury in untreated tubules, were protective. Significant effects were detected at 0.25 mM concentrations of the reagents, and protection was nearly complete at concentrations of 1 mM and above. Glutamate and cysteine alone were not protective. The exogenous GSH added to the tubule suspensions was rapidly degraded to its component amino acids. Treatment of tubules with GSH or cysteine, but not glycine, increased intracellular GSH levels. Oxidized GSH was protective. Serine, N-(2-mercaptopropionyl)-glycine, and a panel of agents known to modify injury produced by reactive oxygen metabolites were without benefit. These observations identify a novel and potent action of glycine to modify the course of hypoxic renal tubular cell injury. This effect is independent of changes in cellular GSH metabolism and appears to be unrelated to alterations of cell thiols or reactive oxygen metabolites. Further elucidation of its mechanism may provide insight into both the basic pathophysiology of oxygen deprivation-induced cell injury and a practical way to ameliorate it.
J M Weinberg, J A Davis, M Abarzua, T Rajan
Title and authors | Publication | Year |
---|---|---|
Identification of potential ferroptosis hub genes in acute-on-chronic liver failure based on bioinformatics analysis and experimental verification.
Kuang M, Cai L, Zhao J, Huang L, Ji Y, Lv B, Kuang W |
BMC Medical Genomics | 2023 |
The Combined Treatment of Glutathione Sodium Salt and Ascorbic Acid for Preventing Contrast-Associated Acute Kidney Injury in ST-Elevation Myocardial Infarction Patients Undergoing Primary PCI: A Hypothesis to Be Validated
Arrivi A, Truscelli G, Pucci G, Barillà F, Carnevale R, Nocella C, Sordi M, Dominici M, Tanzilli G, Mangieri E |
Antioxidants | 2023 |
Inhibiting NINJ1-dependent plasma membrane rupture protects against inflammasome-induced blood coagulation and inflammation.
Cui J, Li H, Zhang G, Zhang Y, Yang L, Sim MMS, Wood JP, Wei Y, Li Z, Wu C |
bioRxiv : the preprint server for biology | 2023 |
(Zebra)fishing for nephrogenesis genes
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA |
Tissue Barriers | 2023 |