Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (210)

Advertisement

Research Article Free access | 10.1172/JCI113224

Cytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules.

J M Weinberg, J A Davis, M Abarzua, and T Rajan

Department of Internal Medicine, Veterans Administration Medical Center, Ann Arbor, Michigan.

Find articles by Weinberg, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Veterans Administration Medical Center, Ann Arbor, Michigan.

Find articles by Davis, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Veterans Administration Medical Center, Ann Arbor, Michigan.

Find articles by Abarzua, M. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Veterans Administration Medical Center, Ann Arbor, Michigan.

Find articles by Rajan, T. in: JCI | PubMed | Google Scholar

Published November 1, 1987 - More info

Published in Volume 80, Issue 5 on November 1, 1987
J Clin Invest. 1987;80(5):1446–1454. https://doi.org/10.1172/JCI113224.
© 1987 The American Society for Clinical Investigation
Published November 1, 1987 - Version history
View PDF
Abstract

Roles for both the tripeptide, GSH, and individual amino acids in modifying the cellular response to oxygen deprivation-induced injury have been suggested by prior work in kidney and other tissues, but the precise interrelationships have not been clearly defined. We have studied the effects of GSH, its component amino acids, and related compounds on the behavior of isolated renal proximal tubules in a well characterized model of hypoxic injury in vitro. GSH, the combination of cysteine, glutamate, and glycine and glycine alone, when present in the medium during 30 min hypoxia, a duration sufficient to produce extensive irreversible injury in untreated tubules, were protective. Significant effects were detected at 0.25 mM concentrations of the reagents, and protection was nearly complete at concentrations of 1 mM and above. Glutamate and cysteine alone were not protective. The exogenous GSH added to the tubule suspensions was rapidly degraded to its component amino acids. Treatment of tubules with GSH or cysteine, but not glycine, increased intracellular GSH levels. Oxidized GSH was protective. Serine, N-(2-mercaptopropionyl)-glycine, and a panel of agents known to modify injury produced by reactive oxygen metabolites were without benefit. These observations identify a novel and potent action of glycine to modify the course of hypoxic renal tubular cell injury. This effect is independent of changes in cellular GSH metabolism and appears to be unrelated to alterations of cell thiols or reactive oxygen metabolites. Further elucidation of its mechanism may provide insight into both the basic pathophysiology of oxygen deprivation-induced cell injury and a practical way to ameliorate it.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1446
page 1446
icon of scanned page 1447
page 1447
icon of scanned page 1448
page 1448
icon of scanned page 1449
page 1449
icon of scanned page 1450
page 1450
icon of scanned page 1451
page 1451
icon of scanned page 1452
page 1452
icon of scanned page 1453
page 1453
icon of scanned page 1454
page 1454
Version history
  • Version 1 (November 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (210)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts