Abstract

Alpha 1-antitrypsin (alpha 1AT), a 52,000-mol-wt serum glycoprotein produced by hepatocytes and mononuclear phagocytes, functions as the major inhibitor of neutrophil elastase. The alpha 1AT haplotype S is associated with childhood liver disease and/or adult emphysema when inherited with the Z haplotype to give the phenotype SZ. To accurately identify the SZ phenotype at the level of genomic DNA, four 32P-labeled 19-mer synthetic oligonucleotide probes were prepared; two to identify the M and S difference in exon III, and two to identify the M and Z difference in exon V. These probes were hybridized with various cloned DNAs and genomic DNAs cut with the restriction endonucleases BgII and EcoRI; the genomic DNAs represented all six possible phenotype combinations of the M, S, and Z haplotypes (MM, MS, MZ, SS, ZZ, and SZ). Using the four probes to evaluate 42 samples of genomic DNA, the "at risk" SZ and ZZ phenotypes were correctly identified in all cases, as were the "not at risk" phenotypes SS, MS, MM, and MZ, demonstrating that both exon III and exon V directed probes are necessary to properly identify all of the major "at risk" alpha 1AT genes. However, when used to evaluate a very rare family carrying a null allele, these four oligonucleotide probes misidentified the "at risk" null-null and S null phenotypes as "not at risk" MM and SM combinations. These observations indicate that oligonucleotide gene probes yielded reliable and accurate assessment of "at risk" alpha 1AT genotypes in almost all situations, but in the context of prenatal diagnosis and genetic counseling this approach must be used with caution and in combination with family studies so as not to misidentify rare genotypes that may be associated with a risk for disease.

Authors

T Nukiwa, M Brantly, R Garver, L Paul, M Courtney, J P LeCocq, R G Crystal

×

Other pages: