Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus.
B J Ballermann, R L Hoover, M J Karnovsky, B M Brenner