Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Human fibronectin metabolism.
B A Pussell, … , M A Brown, J A Charlesworth
B A Pussell, … , M A Brown, J A Charlesworth
Published July 1, 1985
Citation Information: J Clin Invest. 1985;76(1):143-148. https://doi.org/10.1172/JCI111937.
View: Text | PDF
Research Article

Human fibronectin metabolism.

  • Text
  • PDF
Abstract

The metabolic behavior of fibronectin (Fn), a highly adhesive glycoprotein (440,000 mol wt), was studied in eight healthy control subjects and in 11 patients, six of whom were critically ill. Fn was purified from fresh human plasma, radiolabeled, and shown to retain function both in vitro and in vivo. Results showed that, in normal controls, Fn is a rapidly catabolized protein with a fractional catabolic rate (FCR) of 4.81%/h (range, 4.00-6.27), a half-life (t1/2) of 25 h (20-30), extravascular/intravascular diffusion ratio (EV/IV) of 2.04 (1.52-3.30), and a synthesis rate (SR) of 0.71 mg/kg body weight per h (0.61-0.87). There was evidence for extravascular catabolism in each subject. Plasma levels correlated with SR but not with t1/2 or FCR. Patients had a lower EV/IV ratio, and in two critically ill patients with low plasma Fn concentration the SR was markedly depressed. These findings suggest that reduced synthesis of Fn, rather than increased FCR or increased extravascular distribution, is responsible for Fn deficiency in critically ill patients.

Authors

B A Pussell, P W Peake, M A Brown, J A Charlesworth

×

Full Text PDF

Download PDF (1.02 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts