Oxygen transport to and substrate turnover in leg muscle were studied at rest and during light and heavy upright bicycle exercise in two brothers with a hereditary hemoglobinopathy associated with high oxygen affinity (P50 = 13 mmHg). Femoral venous oxygen tension was below normal and femoral venous oxygen saturation above normal at rest and during exercise. Thus, the arterial-femoral venous oxygen saturation difference was decreased. Despite a compensatory increase in hemoglobin concentration, the arterial-femoral venous oxygen content difference tended to be below normal at heavy exercise. Approximately 25% of the oxygen was delivered via the abnormal hemoglobin at relative heavy exercise. Arterial lactate levels, lactate release, and muscle lactate concentration were not increased at any level of exercise. Glucose, alanine, pyruvate, and glycerol turnover were essentially normal, but the glycogen and creatine phosphate stores were abnormally depleted at the termination of heavy exercise. The exercise electrocardiogram (ECG) was normal, indicating that myocardial oxygenation was adequate. Muscle-surface oxygen pressure fields were normal at rest (not investigated during exercise). It is concluded that the high oxygen affinity of the hemoglobin in our two subjects did not lead to heart or skeletal muscle hypoxia during heavy exercise, as judged from the ECG and from the leg lactate turnover. Despite the lack of evidence for muscle hypoxia, the subjects experienced leg muscle fatigue and the creatine phosphate and glycogen stores were depleted more than normally.
B Wranne, G Berlin, L Jorfeldt, N Lund
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 98 | 1 |
53 | 15 | |
Scanned page | 238 | 5 |
Citation downloads | 36 | 0 |
Totals | 425 | 21 |
Total Views | 446 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.