Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Tissue oxygenation and muscular substrate turnover in two subjects with high hemoglobin oxygen affinity.
B Wranne, … , L Jorfeldt, N Lund
B Wranne, … , L Jorfeldt, N Lund
Published October 1, 1983
Citation Information: J Clin Invest. 1983;72(4):1376-1384. https://doi.org/10.1172/JCI111094.
View: Text | PDF
Research Article

Tissue oxygenation and muscular substrate turnover in two subjects with high hemoglobin oxygen affinity.

  • Text
  • PDF
Abstract

Oxygen transport to and substrate turnover in leg muscle were studied at rest and during light and heavy upright bicycle exercise in two brothers with a hereditary hemoglobinopathy associated with high oxygen affinity (P50 = 13 mmHg). Femoral venous oxygen tension was below normal and femoral venous oxygen saturation above normal at rest and during exercise. Thus, the arterial-femoral venous oxygen saturation difference was decreased. Despite a compensatory increase in hemoglobin concentration, the arterial-femoral venous oxygen content difference tended to be below normal at heavy exercise. Approximately 25% of the oxygen was delivered via the abnormal hemoglobin at relative heavy exercise. Arterial lactate levels, lactate release, and muscle lactate concentration were not increased at any level of exercise. Glucose, alanine, pyruvate, and glycerol turnover were essentially normal, but the glycogen and creatine phosphate stores were abnormally depleted at the termination of heavy exercise. The exercise electrocardiogram (ECG) was normal, indicating that myocardial oxygenation was adequate. Muscle-surface oxygen pressure fields were normal at rest (not investigated during exercise). It is concluded that the high oxygen affinity of the hemoglobin in our two subjects did not lead to heart or skeletal muscle hypoxia during heavy exercise, as judged from the ECG and from the leg lactate turnover. Despite the lack of evidence for muscle hypoxia, the subjects experienced leg muscle fatigue and the creatine phosphate and glycogen stores were depleted more than normally.

Authors

B Wranne, G Berlin, L Jorfeldt, N Lund

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 111 27
PDF 52 9
Scanned page 342 2
Citation downloads 57 0
Totals 562 38
Total Views 600
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts