Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 15 patents
16 readers on Mendeley
  • Article usage
  • Citations to this article (70)

Advertisement

Research Article Free access | 10.1172/JCI110798

Role of Charge and Hydrophobic Interactions in the Action of Bactericidal/Permeability-increasing Protein of Neutrophils on Gram-negative Bacteria

Jerrold Weiss, Michael Victor, and Peter Elsbach

1Department of Medicine, New York University School of Medicine, New York 10016

Find articles by Weiss, J. in: PubMed | Google Scholar

1Department of Medicine, New York University School of Medicine, New York 10016

Find articles by Victor, M. in: PubMed | Google Scholar

1Department of Medicine, New York University School of Medicine, New York 10016

Find articles by Elsbach, P. in: PubMed | Google Scholar

Published March 1, 1983 - More info

Published in Volume 71, Issue 3 on March 1, 1983
J Clin Invest. 1983;71(3):540–549. https://doi.org/10.1172/JCI110798.
© 1983 The American Society for Clinical Investigation
Published March 1, 1983 - Version history
View PDF
Abstract

We have recently provided evidence suggesting that the action of purified cationic bactericidal/permeability-increasing protein (BPI) from neutrophils on susceptible gram-negative bacteria requires saturation binding to negatively charged surface sites (Weiss, J., S. Beckerdite-Quagliata, and P. Elsbach, 1980, J. Clin. Invest., 65: 619-628.)

We now show that this charge interaction is necessary but not sufficient to produce the effects of BPI on the envelope and on viability. By altering the hydrophobic properties of the bacterial (outer) membrane, it is possible to separate saturation binding from the biological action of BPI, indicating that steps beyond surface binding are needed for the antibacterial action. Outer membrane properties were modified by (a) reducing temperature during BPI-Escherichia coli interaction; (b) growing E. coli at 42°C to increase the saturated fatty acid content of membrane phospholipids; and/or (c) using smooth E. coli with a natively less fluid outer membrane. Hydrophobic interaction chromatography on phenyl-Sepharose and measurement of sensitivity to the hydrophobic antibiotic rifampicin were used to monitor the changes in hydrophobic properties of the bacterial outer membrane produced by these manipulations. Nearly all BPI can be removed from the bacterial surface by 80 mM MgCl2 or by trypsin. At 37°C, removal of BPI results in repair of the envelope alterations, but viability is irreversibly lost, even when Mg2+ is added after only 15 s of exposure of the bacteria to BPI. However, under conditions of reduced outer membrane hydrophobicity, when saturation binding still occurs within 30 s, E. coli can be rescued by addition of Mg2+ after up to 5-min exposure to BPI, indicating retardation of postbinding steps.

We conclude that after initial binding BPI must enter into a hydrophobic interaction with the outer membrane in order to produce its antibacterial effects. These postbinding events reversibly mediate the membrane perturbations and irreversibly trigger the bactericidal action of BPI.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 540
page 540
icon of scanned page 541
page 541
icon of scanned page 542
page 542
icon of scanned page 543
page 543
icon of scanned page 544
page 544
icon of scanned page 545
page 545
icon of scanned page 546
page 546
icon of scanned page 547
page 547
icon of scanned page 548
page 548
icon of scanned page 549
page 549
Version history
  • Version 1 (March 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (70)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 15 patents
16 readers on Mendeley
See more details