Recent evidence has suggested that a particulate O2−-forming system is responsible for the respiratory burst in activated neutrophils. The respiratory burst is normally a transient event, lasting only 30-60 min. To investigate the mechanism by which the burst is terminated, we examined the O2−-forming activity of neutrophil particles as a function of time in the presence and absence of agents known to affect the function of intact cells. Measurements of the O2−-forming capacity of the particles against time of exposure of neutrophils to opsonized zymosan, a potent stimulating agent, revealed a rapid fall in activity when exposure was continued beyond 3 min. Exposure to zymosan under conditions in which the myeloperoxidase system was inactive (i.e., in the presence of myeloperoxidase inhibitors, or in the absence of oxygen) resulted in a substantial increase in the initial O2−-forming activity of particles from the zymosan-treated cells, but did not prevent the sharp fall in activity seen when zymosan exposure exceeded 10 min. The fall in activity was, however, prevented when activation took place in the presence of cytochalasin B (1.5 μg/ml), an agent thought to act largely by paralyzing the neutrophil through an interaction with its microfilament network.
Robert C. Jandl, Janine André-Schwartz, Linda Borges-Dubois, Ruby S. Kipnes, B. Jane McMurrich, Bernard M. Babior
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 163 | 0 |
90 | 29 | |
Scanned page | 399 | 1 |
Citation downloads | 56 | 0 |
Totals | 708 | 30 |
Total Views | 738 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.