Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Interactions of acetylcholine and epinephrine on the dynamics of insulin release in vitro.
I M Burr, … , A E Slonim, R Sharp
I M Burr, … , A E Slonim, R Sharp
Published July 1, 1976
Citation Information: J Clin Invest. 1976;58(1):230-239. https://doi.org/10.1172/JCI108454.
View: Text | PDF
Research Article

Interactions of acetylcholine and epinephrine on the dynamics of insulin release in vitro.

  • Text
  • PDF
Abstract

An in vitro system for perifusion of rat pancreatic islets has been utilized to define the effects of epinephrine on acetylcholine-induced insulin release over varying concentrations of the two agents. Perifusion of islets with epinephrine before challenge with acetycholine produced marked enhancement of both phases of cholinergically induced insulin release; enhancement of the first phase being more marked with increase in acetylcholine concentration and the converse being observed with the second phase. Perifusion of islets with epinephrine during stimulation with acetylcholine produced inhibition of insulin release, an effect dependent upon the concentration of epinephrine and of acetylcholine. There was an order of difference in the acetycholine concentration needed to overcome significant epinephrine-mediated inhibition of the first phase of insulin release (5 X 10(-4) mug/ml) and that needed to overcome inhibition of the second phase (5 X 10(-3) mug/ml). Comparison of the effects of various concentrations of epinephrine on glucose- and acetyl-choline-induced insulin release revealed that epinephrine was a less potent inhibitor of the first phase of acetylcholine-induced insulin release than of the first phase of glucose-induced insulin release. These data provide some insight into the potential interactions between cholinergic and adrenergic autonomic systems in modifying insulin release.

Authors

I M Burr, A E Slonim, R Sharp

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 114 7
PDF 38 31
Scanned page 295 0
Citation downloads 47 0
Totals 494 38
Total Views 532
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts