Advertisement
Research Article Free access | 10.1172/JCI108454
Find articles by Burr, I. in: JCI | PubMed | Google Scholar
Find articles by Slonim, A. in: JCI | PubMed | Google Scholar
Find articles by Sharp, R. in: JCI | PubMed | Google Scholar
Published July 1, 1976 - More info
An in vitro system for perifusion of rat pancreatic islets has been utilized to define the effects of epinephrine on acetylcholine-induced insulin release over varying concentrations of the two agents. Perifusion of islets with epinephrine before challenge with acetycholine produced marked enhancement of both phases of cholinergically induced insulin release; enhancement of the first phase being more marked with increase in acetylcholine concentration and the converse being observed with the second phase. Perifusion of islets with epinephrine during stimulation with acetylcholine produced inhibition of insulin release, an effect dependent upon the concentration of epinephrine and of acetylcholine. There was an order of difference in the acetycholine concentration needed to overcome significant epinephrine-mediated inhibition of the first phase of insulin release (5 X 10(-4) mug/ml) and that needed to overcome inhibition of the second phase (5 X 10(-3) mug/ml). Comparison of the effects of various concentrations of epinephrine on glucose- and acetyl-choline-induced insulin release revealed that epinephrine was a less potent inhibitor of the first phase of acetylcholine-induced insulin release than of the first phase of glucose-induced insulin release. These data provide some insight into the potential interactions between cholinergic and adrenergic autonomic systems in modifying insulin release.