Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Adenylate cyclase of human fat cells. Expression of epinephrrine-sensitive activation revealed by 5'guanylyl-imidodiphosphate.
B Cooper, … , J S Partilla, R I Gregerman
B Cooper, … , J S Partilla, R I Gregerman
Published November 1, 1975
Citation Information: J Clin Invest. 1975;56(5):1350-1353. https://doi.org/10.1172/JCI108214.
View: Text | PDF
Research Article

Adenylate cyclase of human fat cells. Expression of epinephrrine-sensitive activation revealed by 5'guanylyl-imidodiphosphate.

  • Text
  • PDF
Abstract

Although catecholamines stimulate lipolysis in human fat cells, activation by epinephrine of adenylate cyclase in human fat cell membranes is not readily observed. The possible role of guanine nucleotides in this reaction has now been examined with human material. Fat cell ghosts were prepared from subcutaneous fat obtained from patients undergoing elective surgery. Adenylate cyclase was assayed with [alpha-32P]ATP as substrate. Fluoride ion stimulated the enzyme 8.3-fold relative to basal levels, but epinephrine activation of cyclase was not statistically significant. GTP did not allow expression of an epinephrine effect. However, the addition of the GTP analogue, 5'-guanylyl-imidodiphosphate [GMP-P(NH)P], along with epinephrine produced 5.7-fold activation of the enzyme (P less than 0.001). GMP-P(NH)P alone was without stimulatory effect. Comparable augmentation by GMP-P (NH) P of adenylate cyclase activity was seen with isoproterenol, norepinephrine, and epinephrine. Propranolol blocked catecholamine-GMP-P (NH) P stimulation of the enzyme, suggesting that the nucleotide-dependent activation of catecholamine-sensitive adenylate cyclase is mediated by beta-receptors. GMP-P(NH)P may prove useful in allowing in vitro demonstration of additional hormone-sensitive adenylate cyclase systems.

Authors

B Cooper, J S Partilla, R I Gregerman

×

Full Text PDF

Download PDF (690.90 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts