Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The Effect of Experimental Diabetes Mellitus and Insulin Replacement on Hepatic Ultrastructure and Protein Synthesis
Eve P. Reaven, … , Daniel T. Peterson, Gerald M. Reaven
Eve P. Reaven, … , Daniel T. Peterson, Gerald M. Reaven
Published February 1, 1973
Citation Information: J Clin Invest. 1973;52(2):248-262. https://doi.org/10.1172/JCI107181.
View: Text | PDF
Research Article

The Effect of Experimental Diabetes Mellitus and Insulin Replacement on Hepatic Ultrastructure and Protein Synthesis

  • Text
  • PDF
Abstract

The following study was conducted in order to define the specific alterations in hepatic ultrastructure responsible for the decrease in hepatic protein synthesis associated with experimental diabetes. Rats received intravenous alloxan (70 mg/kg) and 48 h later were either sacrificed or given insulin for 1, 2, 4, 6, or 24 h. Specimens for electron microscopic evaluation and morphometric analysis were taken from the same livers used to isolate ribosomes for measurement of in vitro protein synthesis. Our results show that hepatocytes from animals with untreated alloxan diabetes show varying degrees of disorganization and loss of rough endoplasmic reticulum (RER) which is directly related to the severity of the alloxan diabetes. A significant correlation existed between the severity of ultrastructural changes as judged by the loss of both membrane and polysome components of the RER and degree of inhibition of protein synthesis (P < 0.001). Abnormalities of hepatic ultrastructure and protein synthesis were reversed within 24 h of insulin administration. The data are consistent with the view that it is the relative decrease in hepatic polysomes that results from the loss of RER in alloxan diabetes that is responsible for the decrease in hepatic protein synthesis.

Authors

Eve P. Reaven, Daniel T. Peterson, Gerald M. Reaven

×

Full Text PDF

Download PDF (10.34 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts