Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107181

The Effect of Experimental Diabetes Mellitus and Insulin Replacement on Hepatic Ultrastructure and Protein Synthesis

Eve P. Reaven, Daniel T. Peterson, and Gerald M. Reaven

Department of Medicine, Stanford University School of Medicine and Palo Alto Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Reaven, E. in: JCI | PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine and Palo Alto Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Peterson, D. in: JCI | PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine and Palo Alto Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Reaven, G. in: JCI | PubMed | Google Scholar

Published February 1, 1973 - More info

Published in Volume 52, Issue 2 on February 1, 1973
J Clin Invest. 1973;52(2):248–262. https://doi.org/10.1172/JCI107181.
© 1973 The American Society for Clinical Investigation
Published February 1, 1973 - Version history
View PDF
Abstract

The following study was conducted in order to define the specific alterations in hepatic ultrastructure responsible for the decrease in hepatic protein synthesis associated with experimental diabetes. Rats received intravenous alloxan (70 mg/kg) and 48 h later were either sacrificed or given insulin for 1, 2, 4, 6, or 24 h. Specimens for electron microscopic evaluation and morphometric analysis were taken from the same livers used to isolate ribosomes for measurement of in vitro protein synthesis. Our results show that hepatocytes from animals with untreated alloxan diabetes show varying degrees of disorganization and loss of rough endoplasmic reticulum (RER) which is directly related to the severity of the alloxan diabetes. A significant correlation existed between the severity of ultrastructural changes as judged by the loss of both membrane and polysome components of the RER and degree of inhibition of protein synthesis (P < 0.001). Abnormalities of hepatic ultrastructure and protein synthesis were reversed within 24 h of insulin administration. The data are consistent with the view that it is the relative decrease in hepatic polysomes that results from the loss of RER in alloxan diabetes that is responsible for the decrease in hepatic protein synthesis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 248
page 248
icon of scanned page 249
page 249
icon of scanned page 250
page 250
icon of scanned page 251
page 251
icon of scanned page 252
page 252
icon of scanned page 253
page 253
icon of scanned page 254
page 254
icon of scanned page 255
page 255
icon of scanned page 256
page 256
icon of scanned page 257
page 257
icon of scanned page 258
page 258
icon of scanned page 259
page 259
icon of scanned page 260
page 260
icon of scanned page 261
page 261
icon of scanned page 262
page 262
Version history
  • Version 1 (February 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts