T M Foy, S R Masters, R J Noelle
It is now recognized that IL-12 plays a predominant role in protective immunity against intracellular pathogens by promoting the development of T helper type 1 (Th1) responses. We here report the unexpected observations that IL-12 exerts differential effects on the maturation of "native" human CD4 T cells isolated from umbilical cord blood or from the blood of healthy adults. After priming in the presence of IL-12, naive cells of adult donors, defined as CD45R0- CD4+ T cells, acquire a Th1 phenotype whereas neonatal cells develop into effector cells producing high levels of IL-4 in addition to IFN-gamma. This effect of IL-12 on neonatal T cells is direct inasmuch as it is observed on highly purified CD4 T cells, however, it is not inhibited by CD8 T cells and natural killer cells. Unstimulated neonatal T cells which have been preincubated with IL-12 before the priming behave like adult T cells and acquire a Th1 phenotype after stimulation in the presence of IL-12. Given that IL-4 is a potent antagonist of Th1 responses, the finding that IL-12 promotes the maturation of neonatal T cells into IL-4 producers may explain the increased susceptibility of neonates to intracellular pathogens and should be taken into account for the development of vaccines to be used in the perinatal period.
U Shu, C E Demeure, D G Byun, F Podlaski, A S Stern, G Delespesse
Endothelin-1 is a potent endothelium-derived vasoconstrictor peptide. Although circulating concentrations are not increased in essential hypertension, enhanced sensitivity to endothelin-1 has been observed in animal models of hypertension. We investigated dorsal hand vein responses to local infusion of endothelin-1 and norepinephrine in 12 patients with essential hypertension who had never received treatment and in 12 age and sex matched normotensive control subjects. The maximal venoconstriction and the geometric mean of the dose of norepinephrine that caused 50% of maximal venoconstriction were similar in hypertensive (mean +/- SE; 80 +/- 4%; 31 +/- 8 pmol/min) and normotensive subjects (87 +/- 5%, 22 +/- 9 pmol/min). In contrast, mean venoconstriction to endothelin-1 was significantly greater in hypertensive (49 +/- 5%) than in normotensive subjects (27 +/- 2%; P = 0.004). Sympathetically mediated venoconstriction elicited by deep breath was substantially potentiated by endothelin-1 in hypertensive (67 +/- 7% at 90 min) but not normotensive subjects (11 +/- 3% at 90 min; P = 0.001). Venoconstriction to endothelin-1 correlated positively with mean arterial pressure in the hypertensive subjects (r = 0.82; p = 0.001) but negatively in the normotensive subjects (r = -0.58; p = 0.047). Endothelin-1 may contribute to the reduction of venous compliance occurring in the early stages of essential hypertension and to the altered systemic hemodynamics in this condition.
W G Haynes, M F Hand, H A Johnstone, P L Padfield, D J Webb
Mycobacteria have been implicated in the pathogenesis of autoimmunity. To determine the potential effect of mycobacterial antigens on peripheral blood mononuclear cells (PBMC), we analyzed PBMC incubated with the acetone-precipitable fraction of Mycobacterium tuberculosis (APMT) for changes in cellular protein expression. Two-dimensional gel analysis showed induction of a 36-kD polypeptide identified as proliferating cell nuclear antigen (PCNA), a known autoantigen, after incubation with AP-MT. PCNA plays a role in cell proliferation and is expressed as a late growth regulated factor. However, its synthesis in response to AP-MT was induced as an early event. The early induction of PCNA was regulated at a posttranscriptional level and was restricted to T cells. Treatment of PBMC with known T cell mitogens, namely PHA, anti-CD3 antibodies, and staphylococcal superantigens failed to induce an early PCNA increase. The distinct characteristics of the AP-MT effect on PCNA expression suggest a separate mechanism of induction in response to AP-MT, compared with the late increase observed in response to mitogens. The induction of PCNA in response to mycobacterial antigens may represent a pathogenically relevant mechanism in autoimmunity.
H M Haftel, Y Chang, R Hinderer, S M Hanash, J Holoshitz
A Xenopus oocyte expression system was used to examine how glucose transporters (GLUT 2 and GLUT 3) and glucokinase (GK) activity affect glucose utilization. Uninjected oocytes and low rates of both glucose transport and phosphorylation; expression of GLUT 2 or GLUT 3 increased glucose phosphorylation approximately 20-fold by a low Km, endogenous hexokinase at glucose concentrations < or = 1 mM, but not at higher glucose concentrations. Coexpression of functional GK isoforms with GLUT 2 or 3 increased glucose utilization approximately an additional two- to threefold primarily at the physiologic glucose concentrations of 5-20 mM. The Km for glucose of both the hepatic and beta cell isoforms of GK, determined in situ, was approximately 5-10 mM when coexpressed with either GLUT 2 or GLUT 3. The increase in glucose utilization by coexpression of GLUT 3 and GK was dependent upon glucose phosphorylation since two missense GK mutations linked with maturity-onset diabetes, 182: Val-->Met and 228:Thr-->Met, did not increase glucose utilization despite accumulation of both a similar amount of immunoreactive GK protein and glucose inside the cell. Coexpression of a mutant GK and a normal GK isoform did not interfere with the function of the normal GK enzyme. Since the coexpression of GK and a glucose transporter in oocytes resembles conditions in the hepatocyte and pancreatic beta cell, these results indicate that increases in glucose utilization at glucose concentrations > 1 mM depend upon both a functional glucose transporter and GK.
H Morita, Y Yano, K D Niswender, J M May, R R Whitesell, L Wu, R L Printz, D K Granner, M A Magnuson, A C Powers
Interferon-alpha induces durable cytogenetic remissions in about one-quarter of newly diagnosed patients with chronic myelogenous leukemia (CML). Even so, after short-term follow-up, previous studies have shown that residual leukemic cells can be detected by the polymerase chain reaction (PCR) in all of these individuals. The objectives of our study were therefore to obtain long-term follow-up data on residual disease in a cohort of complete responders and to determine if leukemic cells with clonogenic potential are present in patients despite the absence of relapse. We performed (a) serial analysis of blood and/or bone marrow for a reverse transcriptase PCR amplified BCR-ABL transcript at times well beyond the point that cytogenetic remission was first attained and (b) reverse transcriptase PCR of individually plucked myeloid and erythroid colonies for the presence of the same transcript. Seven CML patients who had previously attained complete cytogenetic remission while on interferon-alpha were investigated. Six of the seven patients were in complete cytogenetic remission at the time of analysis, whereas one patient had early evidence of cytogenetic relapse. With ongoing therapy, five patients with the longest follow-up eventually achieved PCR negativity at time periods of 27, 32, 36, 49, and 67 mo after a complete cytogenetic remission was first noted. Even so, residual disease was detected in progenitor cells derived from two patients, each of whom had been in continuous cytogenetic remission for approximately 2.5 and 3.5 yr, respectively. Progenitors expressing BCR-ABL transcripts were also detected in the patient with early cytogenetic relapse. These observations demonstrate that residual disease resides in colony-forming cells that should have the potential to repopulate the bone marrow. However, the presence of a minority of Ph-positive CML progenitor cells for a very long period of time is still compatible with durable remission, confirming that a situation of tumor dormancy may be induced in CML by interferon therapy.
M Talpaz, Z Estrov, H Kantarjian, S Ku, A Foteh, R Kurzrock
The cellular sites of clearance and degradation of the pentraxin plasma proteins, C-reactive protein, the classical acute phase reactant, and serum amyloid P component (SAP), a universal constituent of amyloid deposits, were sought using the ligand 125I-tyramine cellobiose (TC) which is substantially retained within the cells in which catabolism takes place. Pentraxins labeled with 125I-TC showed the same in vitro and in vivo ligand binding and the same in vivo plasma t1/2 as the directly iodinated proteins and the native unlabeled pentraxins, indicating that their mode of clearance was likely to be physiological. After intravenous injection into mice and rabbits of human C-reactive protein, human SAP, and mouse SAP, each labeled with 125I-TC, most of the radioactivity remaining in the body at 24 h was located in hepatocytes. None was detected in other liver cells, and only traces were present in other viscera; the rest was in the carcass, representing intact pentraxins in the blood and extravascular compartment, and escaped label which had not yet been excreted. Hepatocytes are thus the single major site of pentraxin clearance and catabolism in vivo. This is consistent with the observation that SAP that has localized to amyloid deposits persists there and is not degraded.
W L Hutchinson, G E Noble, P N Hawkins, M B Pepys
The Ca2+ responsiveness of vascular smooth muscle myofilaments is not unique: it is increased during neuro-humoral activation and decreased during beta-adrenergic stimulation. In this study we tested whether an augmented Ca2+ responsiveness of smooth muscle myofilaments may contribute to the increased coronary tone observed in hypertension using beta-escin-permeabilized coronary arteries from 3-mo-old stroke-prone spontaneously hypertensive rats (SHRSP) and their age matched normotensive reference strain (WKY rats). In intact coronary arteries, the response to 5-hydroxytryptamine (5-HT) but not to KCl was larger in SHRSP than in WKY rats. In beta-escin permeabilized coronary arteries in which the receptor effector coupling is still intact, 5-HT enhanced force at constant submaximal (Ca2+) (pCa 6.38) to a greater extent in SHRSP. The Ca2+ sensitizing effect of 5-HT was mimicked by GTP gamma S (0.01-10 microM); again this effect was larger in SHRSP. In the absence of 5-HT or GTP gamma S the Ca2+ force relation was similar in both groups. Forskolin induced relaxation at constant submaximal (Ca2+). This desensitizing effect was smaller in SHRSP than in WKY rats. In conclusion, this study shows that intracellular signalling pathways involved in modulating the Ca2+ responsiveness of coronary smooth muscle myofilaments are altered in the genetically hypertensive animals favoring a hypercontractile state in the coronary circulation.
S Satoh, R Kreutz, C Wilm, D Ganten, G Pfitzer
M E Conley, M Larché, V R Bonagura, A R Lawton 3rd, R H Buckley, S M Fu, E Coustan-Smith, H G Herrod, D Campana
Loci linked to sensitivity to dietary obesity were identified by Quantitative Trait Locus (QTL) analysis of two mapping populations derived from a cross between AKR/J and SWR/J mice. AKR/J mice are sensitive to dietary obesity when fed a high fat diet while SWR/J mice are resistant. Intercrosses between these strains segregate the phenotype of sensitivity to dietary obesity. Using an F2 mapping population of 931 male mice we found significant linkage with a QTL on chromosome 9 (Likelihood of the Odds [LOD] ratio of 4.85) and another QTL on chromosome 15 (LOD = 3.93). The presence of a QTL on chromosome 15 was confirmed in a separate mapping population of 375 male F1 x SWR/J mice (LOD = 3.82). These two loci are designated dietary obese 2 (Do2) and dietary obese 3 (Do3) for the chromosome 9 and 15 loci, respectively. Both of these chromosomal regions contain candidate genes which may contribute to variation in the phenotype. These loci also exert a significant control over individual adipose depot weights.
D B West, J Goudey-Lefevre, B York, G E Truett
Diesel exhaust particles (DEP) have been implicated in the increased incidence of allergic airway disorders. We investigated the effects of DEP on localized immunoglobulin production by performing nasal challenges with varying doses of DEP and analyzing the local immune response in nasal lavages obtained before and after. A significant rise in nasal IgE but not IgG, IgA, IgM, or albumin was observed in subjects 4 d after challenge with 0.30 mg DEP, equivalent to exposure on an average Los Angeles day. Direct evidence for DEP-enhanced local production of IgE was that challenge increased the number of IgE-secreting cells in lavage fluid from < 1 in 2,000,000 to > 1 in 100,000 but did not alter the number of IgA-secreting cells. There was a concomitant increase in epsilon mRNA production in the lavage cells. Additionally, DEP altered the relative amounts of five different epsilon mRNAs generated by alternative splicing, mRNAs that code for different IgE proteins. These results show that DEP exposure in vivo causes both quantitative and qualitative changes in local IgE production. The implication is that natural exposure to DEP may result in increased expression of respiratory allergic disease.
D Diaz-Sanchez, A R Dotson, H Takenaka, A Saxon
Cell-mediated immune response to breast tumor has only been marginally investigated. To gain insight into this issue we have developed two clones of distinct phenotype, CD3+ alpha/beta, CD4+, CD8-, CD16-, and CD3+ alpha/beta, CD4-, CD8+, CD16-, respectively, from peripheral blood lymphocytes (PBL) of a breast cancer patient. These effectors, selected on the basis of their cytolytic activity against autologous tumor cells and lack of lysis on NK-sensitive cell lines, preferentially recognize autologous tumor cells. The two clones' cytotoxic activity, while inhibited by anti-LFA-1 mAb, could not be abolished by mAbs to CD3, to class I and class II MHC molecules, and by mAbs to molecules involved in T cell function (i.e., CD4, CD8, CD2). The molecular structure of the alpha and beta T cell receptor chains of the two effector cells, confirmed their clonality and showed that, despite an overlapping killing pattern, they possess distinct TCR alpha and beta chains. These findings demonstrate that breast tumor-specific CTL clones can be generated through current technology and that a alpha/beta effector cell population operating through a HLA-unrestricted and TCR/CD3-independent pathway may be involved in the identification and killing of this tumor.
P Nisticò, P De Berardinis, S Morrone, T Alonzi, C Buono, I Venturo, P G Natali
Plasma albumin reacts with nitric oxide (NO) to form the bioactive adduct, S-nitroso-albumin (S-NO-albumin). The limited intracellular access of S-NO-albumin suggests the need for a vascular transfer mechanism of NO from a large plasma S-NO-albumin pool to effect biologic function. To study the role of low molecular weight (LMW) thiols in NO transfer in vivo, we administered intravenous S-NO-albumin (1-300 nmol/kg) to rabbits before and after an intravenous infusion of L-cysteine or N-acetyl-L-cysteine. S-NO-albumin produced dose-dependent hypotension that was significantly augmented by prior infusion of either LMW thiol. LMW thiol infusion significantly accelerated the rate of onset and reduced the duration of action of the hypotension induced by S-NO-albumin. The hemodynamic effects of S-NO-albumin after pretreatment with LMW thiols were mimicked by administration of the corresponding LMW S-nitrosothiol. The transfer of NO from albumin to L-cysteine was directly measured in rabbit plasma using a novel technique that couples high performance liquid chromatography to electrochemical detection. These data demonstrate that NO exchange between plasma protein thiol-bound NO and available LMW thiol pools (transnitrosation) occurs in vivo.
J S Scharfstein, J F Keaney Jr, A Slivka, G N Welch, J A Vita, J S Stamler, J Loscalzo
C E Walsh, A W Nienhuis, R J Samulski, M G Brown, J L Miller, N S Young, J M Liu
Activated macrophages contribute to chronic inflammation by the secretion of cytokines and proteinases. Tumor necrosis factor alpha (TNF alpha) is particularly important in this process because of its ability to regulate other inflammatory mediators in an autocrine and paracrine fashion. The mechanism(s) responsible for the cell type-specific regulation of TNF alpha is not known. We present data to show that the expression of TNF alpha is regulated by the transcription factor C/EBP beta (NF-IL6). C/EBP beta activated the TNF alpha gene promoter in cotransfection assays and bound to it at a site which failed to bind the closely related protein C/EBP alpha. Finally, a dominant-negative version of C/EBP beta blocked TNF alpha promoter activation in myeloid cells. Our results implicate C/EBP beta as an important regulator of TNF alpha by myelomonocytic cells.
R M Pope, A Leutz, S A Ness
The fact that the potentiating effect of prolonged hyperglycemia on the subsequent insulin secretion is observed in vivo but not in vitro suggests the involvement of extrapancreatic factors in the in vivo memory of pancreatic beta cells to glucose. We have investigated the possible role of the autonomic nervous system. Rats were made hyperglycemic by a 48-h infusion with glucose (HG rats). At the end of glucose infusion as well as 6 h postinfusion, both parasympathetic and sympathetic nerve activities were profoundly altered: parasympathetic and sympathetic activities, assessed by the firing rate either of the thoracic vagus nerve or the superior cervical ganglion, were dramatically increased and decreased, respectively. Moreover, 6 h after the end of glucose infusion, insulin secretion in response to a glucose load was dramatically increased in HG rats compared to controls. To determine whether these changes could be responsible for the increased sensitivity of the beta cell to glucose, insulin release in response to glucose was measured in HG and control rats, either under subdiaphragmatic vagotomy or after administration of the alpha 2A-adrenergic agonist oxymetazoline. Both treatments partially abolished the hyperresponsiveness of the beta cell to glucose in HG rats. Therefore chronic hyperglycemia brings about changes in the activity of the autonomic nervous system, which in turn are responsible, at least in part, for the generation of enhanced beta cell responsiveness to glucose in vivo.
J M N'Guyen, C Magnan, M C Laury, C Thibault, J Leveteau, M Gilbert, L Pénicaud, A Ktorza
Nitric oxide (NO) has been implicated as a mediator of physiologic and pathologic cellular injury. Since the cytokine interleukin-1 beta (IL-1 beta) induces nitric oxide synthase (NOS) activity as well as effects morphogenic/cytotoxic changes and increased prostaglandin (PGE2) levels in cultured whole ovarian dispersates, we set out to determine whether these actions are interrelated. Treatment with IL-1 beta resulted in a marked increase in media nitrite and nitrate accumulation, morphological alterations, and increased release of lactate dehydrogenase (LDH) into media. Addition of IL-1 receptor antagonist (RA) eliminated these IL-1 beta effects. In contrast, specific inhibitors of NOS failed to reverse IL-1 beta-induced morphogenic changes or LDH release in spite of complete reduction of media nitrite to control levels. Similarly, treatment with transforming growth factor beta 1, inhibited IL-1 beta-induced nitrite accumulation, but had no effect on the morphologic or cytotoxic endpoints. Moreover, the addition of sodium nitroprusside, an NO generator, resulted in progressive increments in media nitrite content without a corresponding increase in the IL-1 beta-associated morphogenic changes or media LDH content. Furthermore, IL-1-induced PGE2 accumulation remained unaffected by specific NOS inhibition. These observations support the view that NO does not mediate the morphogenic/cytotoxic or inflammatory-like (e.g., PGE2 inducing) properties of IL-1 beta in cultured whole ovarian dispersates. Although the precise role of NO in ovarian physiology remains unknown, it is possible that NO participates in the periovulatory modulation of ovarian blood flow by virtue of its potent vasodilatory activity.
I Ben-Shlomo, E Y Adashi, D W Payne
Transforming growth factor-beta 1 (TGF-beta 1) is a peptide growth factor that may play a role in the myocardial response to hypertrophic stimuli. However, the cellular distribution, mechanism of induction, and source of increased TGF-beta 1 in response to hypertrophic stimuli are not known. We tested the hypothesis that the cardiac myocyte responds to hypertrophic stimuli with the increased expression of TGF-beta 1. In adult rat ventricular myocardium freshly dissociated into myocyte and nonmyocyte cellular fractions, the preponderance of TGF-beta 1 mRNA visualized by Northern hybridization was in the nonmyocyte fraction. Abdominal aortic constriction (7 d) and subcutaneous norepinephrine infusion (36 h) each caused ventricular hypertrophy associated with 3.1-fold and 3.8-fold increases, respectively, in TGF-beta 1 mRNA in the myocyte fraction, but had no effect on the level of TGF-beta 1 mRNA in the nonmyocyte fraction. In ventricular myocytes, norepinephrine likewise caused a 4.1-fold increase in TGF-beta 1 mRNA associated with an increase in TGF-beta bioactivity. This induction of TGF-beta 1 mRNA occurred at norepinephrine concentrations as low as 1 nM and was blocked by prazosin, but not propranolol. NE did not increase the TGF-beta 1 mRNA level in nonmyocytes, primarily fibroblasts, cultured from neonatal rat ventricle. Thus, the cardiac myocyte responds to two hypertrophic stimuli, pressure overload and norepinephrine, with the induction of TGF-beta 1. These data support the view that TGF-beta 1, released by myocytes and acting in an autocrine and/or paracrine manner, is involved in myocardial remodeling by hypertrophic stimuli.
N Takahashi, A Calderone, N J Izzo Jr, T M Mäki, J D Marsh, W S Colucci
Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common known genetic disorder of fatty acid oxidation. Most (approximately 80%) cases are homozygous for a single mutation: A to G replacement at nucleotide 985 (A985G). MCAD deficiency typically presents in the second year of life as hypoketotic hypoglycemia associated with fasting and may progress to liver failure, coma, and death. Prompt diagnosis and management may prevent long-term sequelae. MCAD deficiency was verified by analysis of urinary acylglycine and serum acylcarnitine species from two neonates referred for diagnosis. Full-length cDNA and MCAD exon 7 and 11 genomic clones were prepared for sequence analysis. Normal and mutant cDNAs were expressed in bacteria, and enzymatic activity was assayed by the ferricenium hexaflurophosphate method. Four compound heterozygote individuals from two unrelated families with A985G on one allele and a novel G to A mutation at nucleotide 583 (G583A) as the second mutant allele presented with MCAD deficiency in the first week of life. The expressed G583A mutant protein lacks enzymatic activity. This novel mutation, G583A, is associated with severe MCAD deficiency causing hypoglycemia or sudden, unexpected neonatal death. This previously unrecognized phenotype of MCAD deficiency may contribute significantly to preventable infant deaths.
J C Brackett, H F Sims, R D Steiner, M Nunge, E M Zimmerman, B deMartinville, P Rinaldo, R Slaugh, A W Strauss
To test the hypothesis that insulin acutely enhances the metabolic clearance rate (MCR) of dehydroepiandrosterone in humans, the effect of a short-term insulin infusion on the MCR of dehydroepiandrosterone was assessed in 10 men and 7 women. After an overnight fast, dehydroepiandrosterone was infused at 3.47 mumol/h for 6.5 h. At 240 min, a hyperinsulinemic-euglycemic clamp was begun by infusing insulin at 21.5 pmol/kg per min for 2.5 h. MCR of dehydroepiandrosterone was calculated at baseline (210-240 min) and during the insulin infusion (360-390 min). A control study was conducted at least 1 wk later, in which 0.45% saline was substituted for the hyperinsulinemic-euglycemic clamp. During the insulin clamp study, serum insulin rose from 34 +/- 2 to 1084 +/- 136 pmol/liter (P = 0.0001) in men and from 40 +/- 5 to 1357 +/- 175 pmol/liter (P = 0.0003) in women, while serum glucose remained constant in both groups. MCR of dehydroepiandrosterone rose in men during the insulin infusion from 2443 +/- 409 to 3599 +/- 500 liters/24 h (P = 0.003), but did not change during the control saline infusion. In contrast, MCR of dehydroepiandrosterone in women did not change in the insulin clamp study during insulin infusion (2526 +/- 495 liters/24 h at baseline vs. 2442 +/- 491 liters/24 h during insulin infusion; P = 0.78). These findings suggest that insulin acutely increases the MCR of dehydroepiandrosterone in men but not in women.
J E Nestler, Z Kahwash
Skeletal muscle CoA and carnitine metabolism were investigated in six human volunteers at rest and after exhaustive exercise under normoxic and hypoxic conditions. In comparison to the values at rest, exhaustive exercise was associated with a three- to fourfold increase in the skeletal muscle lactate, and with a twofold increase in the acetyl-CoA content, both under normoxic and hypoxic conditions. Since exercise did not significantly affect the skeletal muscle CoA radical (CoASH), total acid-soluble, or total CoA contents, the increase in the acetyl-CoA content was at the expense of short-chain acyl-CoAs different from acetyl-CoA. With exhaustive exercise, the skeletal muscle acetylcarnitine and short-chain acylcarnitine contents increased by a factor of three to four both under normoxic and hypoxic conditions. In contrast to the CoA pool, these increases were associated with a decrease in the free carnitine content, whereas the total acid-soluble and total carnitine contents were not affected by exercise. After exhaustive exercise, the skeletal muscle acetyl-CoA/CoASH ratio showed a linear correlation with the corresponding acetylcarnitine/free carnitine ratio. The plasma short-chain acylcarnitine concentration increased by a factor of two to three during exercise, and was not significantly different from the values at rest 40 min after completion of exercise. Thus, the current studies illustrate the close interaction between the CoA and carnitine pools in the exercising human skeletal muscle, and they underscore the important role of carnitine in maintaining the muscular CoASH content during exhaustive exercise.
R Friolet, H Hoppeler, S Krähenbühl
Anti-Factor VIII (FVIII) antibodies were prepared by a combination of salt precipitation, gel filtration chromatography, and specific adsorption over insolubilized FVIII from the serum of 10 healthy subjects with normal levels of FVIII. Antibody specificity was confirmed by the capacity to recognize soluble and insolubilized FVIII and to neutralize FVIII cofactor activity in FX activation. Epitope mapping was carried out using a competition ELISA in which affinity-purified human antibodies inhibited the binding of labeled monoclonal antibodies. In most cases, a single region of the A3 domain of the FVIII light chain was recognized by the antibodies, while the reactivity toward heavy chain epitopes differed from one antibody preparation to the other. Sera or IgG fractions of the serum before immunoadsorption over insolubilized FVIII did not bind to FVIII. The IgG fraction that was not retained on the FVIII immunosorbent contained IgG that bound to the variable part of anti-FVIII mouse monoclonal antibodies and inhibited the binding of labeled FVIII; in addition, the IgG fraction inhibited the binding of affinity-purified human antibodies to FVIII, thereby strongly suggesting the presence of anti-idiotypic antibodies. These findings indicate that the presence of anti-FVIII antibodies is a more universal phenomenon than previously thought and that anti-idiotypic antibodies capable of inhibiting the binding of anti-FVIII antibodies to FVIII are produced spontaneously.
J G Gilles, J M Saint-Remy
Deficient processing of apo B in oxidized LDL (ox-LDL) by macrophage lysosomal proteases has been documented and attributed to modifications in apo B. We have investigated whether direct inactivation of lysosomal proteases by ox-LDL could also be responsible for this deficient degradation. When mouse peritoneal macrophages (MPM) were preincubated for 21 h at 37 degrees C with ox-LDL, LDL, or vortex-aggregated LDL, only ox-LDL inhibited the subsequent degradation of 125I-labeled forms of the above lipoproteins. Uptake of labeled lipoproteins was not appreciably affected by preincubation with ox-LDL, suggesting that the inhibition was at the level of lysosomal degradation. Thiol protease activity of cell extracts at pH 4.0, was reduced in MPM preincubated with ox-LDL relative to cells preincubated with LDL or medium alone. Extracts from untreated MPM, or mixtures of cathepsin B and D, showed a reduced ability to degrade 125I-LDL at pH 4.5 and reduced cathepsin B activity, after incubation with ox-LDL relative to incubation with LDL. Thus, the reduced degradation of lipoproteins in MPM pretreated with ox-LDL could be due to direct inactivation of the lysosomal protease, cathepsin B.
G Hoppe, J O'Neil, H F Hoff
We reported that feeding rats 8% protein for 3 wk induces net urea transport and morphologic changes in initial inner medullary collecting ducts (IMCDs) which are not present in rats fed 18% protein. In this study, we measured net urea transport in microperfused initial IMCDs from rats fed 8% protein for > or = 3 wk and tested the effect of inhibiting Na+/K(+)-ATPase activity and found that adding 1 mM ouabain to the bath reversibly inhibited net urea transport from 14 +/- 3 to 6 +/- 2 pmol/mm per min (P < 0.01), and that replacing potassium (with sodium) in the bath reversibly inhibited net urea transport from 18 +/- 3 to 5 +/- 0 pmol/mm per min (P < 0.01). Replacing perfusate sodium with N-methyl-D-glucamine reversibly inhibited net urea transport from 12 +/- 2 to 0 +/- 1 pmol/mm per min (P < 0.01), whereas replacing bath sodium had no significant effect on net urea transport. Adding 10 nM vasopressin to the bath exerted no significant effect on net urea transport. Finally, we measured Na+/K(+)-ATPase activity in initial and terminal IMCDs from rats fed 18% or 8% protein and found no significant difference in either subsegment. Thus, net urea transport in initial IMCDs from rats fed 8% protein for > or = 3 wk requires sodium in the lumen, is reduced by inhibiting Na+/K(+)-ATPase, and is unchanged by vasopressin or phloretin. These results suggest that net urea transport may occur via a novel, secondary active, sodium-urea cotransporter.
T Isozaki, J P Lea, J A Tumlin, J M Sands
Renal ischemia results in both a profound fall in cellular ATP and a rapid induction of the 70 kD heat-shock protein family, HSP-70. The present studies examined the relationship between cellular ATP and induction of the stress response in renal cortex. Cellular ATP, continuously monitored by in vivo 31P-NMR spectroscopy, was reduced and maintained at specific, stable levels in renal cortex by partial aortic occlusion for 45 min. Activation of heat-shock transcription factor (HSF) was detected by gel retardation assay and transcription was confirmed by Northern analysis. Activation of HSF was not present, and HSP-70 mRNA induction did not occur when ATP levels were maintained above 60% preocclusion (control) levels. Reduction in cortical ATP levels to 35-50% preocclusion values resulted in HSF activation and low-level expression of inducible HSP-70 mRNA. Cellular ATP of 20-25% control values resulted in a greater level of HSF activation and subsequent HSP-70 mRNA elaboration. HSF was activated at the end of 15 min of total occlusion. The studies indicate that a 50% reduction in cellular ATP in the renal cortex must occur before the stress response is detectable, that reduction of ATP below 25% control levels produces a more vigorous response, and that reperfusion is not required for initiation of a heat-shock response in the kidney. Cellular ATP, or the metabolic consequences associated with ATP depletion, may be a threshold factor for initiation of a stress response in the kidney.
S K Van Why, A S Mann, G Thulin, X H Zhu, M Kashgarian, N J Siegel
Inhibition of platelet aggregation by acadesine was evaluated both in vitro and ex vivo in human whole blood using impedance aggregometry, as well as in vivo in a canine model of platelet-dependent cyclic coronary flow reductions. In vitro, incubation of acadesine in whole blood inhibited ADP-induced platelet aggregation by 50% at 240 +/- 60 microM. Inhibition of platelet aggregation was time dependent and was prevented by the adenosine kinase inhibitor, 5'-deoxy 5-iodotubercidin, which blocked conversion of acadesine to its 5'-monophosphate, ZMP, and by adenosine deaminase. Acadesine elevated platelet cAMP in whole blood, which was also prevented by adenosine deaminase. In contrast, acadesine had no effect on ADP-induced platelet aggregation or platelet cAMP levels in platelet-rich plasma, but inhibition of aggregation was restored when isolated erythrocytes were incubated with acadesine before reconstitution with platelet-rich plasma. Acadesine (100 mg/kg i.v.) administered to human subjects also inhibited platelet aggregation ex vivo in whole blood. In the canine Folts model of platelet thrombosis, acadesine (0.5 mg/kg per min, i.v.) abolished coronary flow reductions, and this activity was prevented by pretreatment with the adenosine receptor antagonist, 8-sulphophenyltheophylline. These results demonstrate that acadesine exhibits antiplatelet activity in vitro, ex vivo, and in vivo through an adenosine-dependent mechanism. Moreover, the in vitro studies indicate that inhibition of platelet aggregation requires the presence of erythrocytes and metabolism of acadesine to acadesine monophosphate (ZMP).
D A Bullough, C Zhang, A Montag, K M Mullane, M A Young
Sarcoidosis is a granulomatous disease in which activated T cells, responding to an unidentified stimulus, accumulate at sites of disease such as the lung. To evaluate the hypothesis that active sarcoidosis is characterized by a selective activation and expansion of a limited repertoire of T cell receptor (TCR) specific T cells, we analyzed TCR V beta gene expression in lung and blood T cells of patients with active sarcoidosis and, for comparison, normal individuals using polymerase chain reaction amplification of 20 V beta gene families. Analysis of normal bronchoalveolar lavage T cells revealed TCR V beta distributions similar to that of normal blood, providing evidence for a lack of generalized skewing of the T cell repertoire in the normal, noninfected lung. Compared to normal lung and blood, subgroups of individuals with sarcoidosis demonstrated biased expression of one or more V beta genes in either the lung or blood. Five V beta gene families (V beta 5, V beta 8, V beta 15, V beta 16, and V beta 18) were most frequently utilized in a biased fashion by sarcoid lung or blood T cells. Furthermore, dramatic skewing of the T cell repertoire was apparent when sarcoid lung and blood T cells were expanded by short-term culture with IL-2. Sequence analysis demonstrated a bias in V beta gene expression was usually due to expansion of select V beta-specific clones, some of which contained a similar V(D)J junctional region motif. These observations provide evidence for a selective activation and accumulation of antigen-specific V beta-expressing T cells in sarcoidosis.
J D Forman, J T Klein, R F Silver, M C Liu, B M Greenlee, D R Moller
Insulin resistance is an important metabolic abnormality often associated with infections, cancer, obesity, and especially non-insulin-dependent diabetes mellitus (NIDDM). We have previously demonstrated that tumor necrosis factor-alpha produced by adipose tissue is a key mediator of insulin resistance in animal models of obesity-diabetes. However, the mechanism by which TNF-alpha interferes with insulin action is not known. Since a defective insulin receptor (IR) tyrosine kinase activity has been observed in obesity and NIDDM, we measured the IR tyrosine kinase activity in the Zucker (fa/fa) rat model of obesity and insulin resistance after neutralizing TNF-alpha with a soluble TNF receptor (TNFR)-lgG fusion protein. This neutralization resulted in a marked increase in insulin-stimulated autophosphorylation of the IR, as well as phosphorylation of insulin receptor substrate 1 (IRS-1) in muscle and fat tissues of the fa/fa rats, restoring them to near control (lean) levels. In contrast, no significant changes were observed in insulin-stimulated tyrosine phosphorylations of IR and IRS-1 in liver. The physiological significance of the improvements in IR signaling was indicated by a concurrent reduction in plasma glucose, insulin, and free fatty acid levels. These results demonstrate that TNF-alpha participates in obesity-related systemic insulin resistance by inhibiting the IR tyrosine kinase in the two tissues mainly responsible for insulin-stimulated glucose uptake: muscle and fat. Images
Gökhan S. Hotamisligil, Adriane Budavari, David Murray, Bruce M. Spiegelman
We have recently shown that (a) human melanocytes express the p75 nerve growth factor (NGF) receptor in vitro; (b) that melanocyte dendricity and migration, among other behaviors, are regulated at least in part by NGF; and (c) that cultured human epidermal keratinocytes produce NGF. We now report that melanocyte stimulation with phorbol 12-tetra decanoate 13-acetate (TPA), previously reported to induce p75 NGF receptor, also induces trk in melanocytes, and TPA effect is further potentiated by the presence of keratinocytes in culture. Moreover, trk in melanocytes becomes phosphorylated within minutes after NGF stimulation. As well, cultures of dermal fibroblasts express neurotrophin-3 (NT-3) mRNA; NT-3 mRNA levels in cultured fibroblasts are modulated by mitogenic stimulation, UV irradiation, and exposure to melanocyte-conditioned medium. Moreover, melanocytes constitutively express low levels of trk-C, and its expression is downregulated after TPA stimulation. NT-3 supplementation to cultured melanocytes maintained in Medium 199 alone prevents cell death. These combined data suggest that melanocyte behavior in human skin may be influenced by neurotrophic factors, possibly of keratinocyte and fibroblast origin, which act through high affinity receptors.
M Yaar, M S Eller, P DiBenedetto, W R Reenstra, S Zhai, T McQuaid, M Archambault, B A Gilchrest
A consistent response to liver injury is the activation of resident mesenchymal cells known as lipocytes (Ito, fat-storing cells) into a proliferating cell type. In cultured lipocytes, platelet-derived growth factor (PDGF) is the most potent proliferative cytokine, but requires the activation-dependent expression of its receptor protein (Friedman, S. L., and M. J. P. Arthur. 1989. J. Clin. Invest. 84:1780-1785); the role of PDGF receptor (PDGFR) in liver injury is unknown. We have examined PDGFR gene expression in freshly isolated lipocytes during liver injury and correlated these findings with a culture model of cellular activation. Whereas lipocytes from normal rats had no detectable transcript for the beta-PDGFR subunit, this mRNA was induced within 1 h after a dose of carbon tetrachloride (CCl4). In contrast, alpha subunit mRNA was detected in normal cells, but was unchanged after liver injury. Similar results were observed in lipocytes from bile duct-obstructed rats, although beta-PDGFR induction was less marked. By immunoblot, induction of beta-PDGFR protein in lipocytes isolated from CCl4-treated animals correlated with mRNA increases. In contrast to lipocytes, endothelial cells from normal liver expressed low levels of alpha- and beta-receptor subunit mRNA, which did not increase with injury. Using a beta-PDGFR antibody, receptor protein could be identified within fibrotic septa in CCl4-treated animals in regions where cells expressed proliferating cell nuclear antigen (PCNA). In cultured lipocytes activated by growth on uncoated plastic, beta-PDGFR transcripts appeared within 3 d after plating, which coincided with the onset of cellular proliferation. In contrast, quiescent cells in suspension culture had no detectable beta-PDGFR mRNA. These results indicate that beta-PDGF receptor induction by lipocytes is an early event during hepatic injury in vivo and in primary culture.
L Wong, G Yamasaki, R J Johnson, S L Friedman
Insulin-mediated vasodilation has been proposed as a determinant of in vivo insulin sensitivity. We tested whether sustained vasodilation with adenosine could overcome the muscle insulin resistance present in mildly overweight patients with essential hypertension. Using the forearm technique, we measured the response to a 40-min local intraarterial infusion of adenosine given under fasting conditions (n = 6) or superimposed on a euglycemic insulin clamp (n = 8). In the fasting state, adenosine-induced vasodilation (forearm blood flow from 2.6 +/- 0.6 to 6.0 +/- 1.2 ml min-1dl-1, P < 0.001) was associated with a 45% rise in muscle oxygen consumption (5.9 +/- 1.0 vs 8.6 +/- 1.7 mumol min-1dl-1, P < 0.05), and a doubling of forearm glucose uptake (0.47 +/- 0.15 to 1.01 +/- 0.28 mumol min-1dl-1, P < 0.05). The latter effect remained significant also when expressed as a ratio to concomitant oxygen balance (0.08 +/- 0.03 vs 0.13 +/- 0.04 mumol mumol-1, P < 0.05), whereas for all other metabolites (lactate, pyruvate, FFA, glycerol, citrate, and beta-hydroxybutyrate) this ratio remained unchanged. During euglycemic hyperinsulinemia, whole-body glucose disposal was stimulated (to 19 +/- 3 mumol min-1kg-1), but forearm blood flow did not increase significantly above baseline (2.9 +/- 0.2 vs 3.1 +/- 0.2 ml min-1dl-1, P = NS). Forearm oxygen balance increased (by 30%, P < 0.05) and forearm glucose uptake rose fourfold (from 0.5 to 2.3 mumol min-1dl-1, P < 0.05). Superimposing an adenosine infusion into one forearm resulted in a 100% increase in blood flow (from 2.9 +/- 0.2 to 6.1 +/- 0.9 ml min-1dl-1, P < 0.001); there was, however, no further stimulation of oxygen or glucose uptake compared with the control forearm. During the clamp, the ratio of glucose to oxygen uptake was similar in the control and in the infused forearms (0.27 +/- 0.11 and 0.23 +/- 0.09, respectively), and was not altered by adenosine (0.31 +/- 0.9 and 0.29 +/- 0.10). We conclude that in insulin-re15-76sistant patients with hypertension, adenosine-induced vasodilation recruits oxidative muscle tissues and exerts a modest, direct metabolic effect to promote muscle glucose uptake in the fasting state. Despite these effects, however, adenosine does not overcome muscle insulin resistance.
A Natali, R Bonadonna, D Santoro, A Q Galvan, S Baldi, S Frascerra, C Palombo, S Ghione, E Ferrannini
Passive Heymann nephritis (PHN) is a model of human membranous nephropathy that is characterized by formation of granular subepithelial immune deposits in the glomerular capillary wall which results in complement activation. This is causally related to damage of the filtration barrier and subsequent proteinuria. The local accumulation of injurious reactive oxygen species (ROS) is a major effector mechanism in PHN. ROS may induce tissue damage by initiating lipid peroxidation (LPO). In turn, this leads to adduct formation between breakdown products of LPO with structural proteins, such as formation of malondialdehyde (MDA) or 4-hydroxynonenal-lysine adducts. To examine the role of LPO in the development of proteinuria we have localized MDA and 4-hydroxynonenal-lysine adducts in glomeruli of PHN rats by immunofluorescence microscopy, using specific monoclonal antibodies. By immunogold electron microscopy, MDA adducts were localized to cytoplasmic vesicles and cell membranes of glomerular epithelial cells, to the glomerular basement membrane (GBM), and also to immune deposits. Type IV collagen was specifically identified as being modified by MDA adducts, using a variety of techniques. Collagenase pretreatment of GBM extracts indicated that the NC-1 domain of type IV collagen was a site of adduct formation. When LPO was inhibited by pretreatment of PHN rats with the antioxidant probucol, proteinuria was reduced by approximately 85%, and glomerular immunostaining for dialdehyde adducts was markedly reduced, even though the formation of immune deposits was not affected. By contrast, lowering of the serum cholesterol levels had no influence on the development of proteinuria. These findings are consistent with the premise that ROS-induced glomerular injury in PHN involves LPO and that this results not only in damage of cell membranes but in modification of type IV collagen in the GBM as well. The close temporal correlation of the occurrence of LPO with proteinuria and the ability of probucol to inhibit proteinuria support a causal role for LPO in the the alteration of the glomerular permselectivity which results in proteinuria.
T J Neale, P P Ojha, M Exner, H Poczewski, B Rüger, J L Witztum, P Davis, D Kerjaschki
Cell adhesion to endothelium regulates the trafficking and recruitment of leukocytes towards lymphoid organs and sites of inflammation. This phenomenon is mediated by the expression of a number of adhesion molecules on both the endothelium and circulating cells. Activation of endothelial cells (EC) with different stimuli induces the expression of several adhesion molecules (E- and P-selectins, ICAM-1, VCAM-1), involved in their interaction with circulating cells. In this report, we have studied the binding of nonactivated and activated B cells to purified E- and P-selectins. Activated but not resting B cells were able to interact with both selectins. This binding capacity of activated B cells paralleled the induction of different carbohydrate epitopes (Lewisx, sialyl-Lewisx, CD57 and CDw65) as well as other molecules bearing these or related epitopes in myeloid cells (L-selectin, alpha L beta 2 and alpha X beta 2 integrins, and CD35) involved in the interaction of different cell types with selectins. B cells infiltrating inflamed tissues like in Hashimoto's thyroiditis, also expressed these selectin-binding carbohydrates in parallel with the expression of E-selectin by surrounding follicular dendritic cells. Moreover, the crosslinking of these selectin-binding epitopes resulted in an increased binding of B cells to different integrin ligands. Thus, in addition to the involvement of integrins, E- and P-selectins could play an important role in the interaction of B lymphocytes with the endothelium during B cell extravasation into lymphoid tissues and inflammatory foci as well as in their organization into lymphoid organs.
A A Postigo, M Marazuela, F Sánchez-Madrid, M O de Landázuri
Coronary atherosclerosis is frequently associated with calcification of arterial plaque. To understand the mechanisms responsible for the formation of atherosclerotic calcification, we examined human coronary arteries for the presence and extent of mineral. In sections stained specifically for mineral, staining was diffuse and present in all atherosclerotic plaques. Hydroxyapatite was not detected in normal coronary artery sections. Distribution of hydroxyapatite coincided with a similar distribution of calcium detected by a radiodense pattern using contact microradiography of the same sections before cytochemical staining. By energy-dispersive x-ray microanalysis, the chemical composition of calcified sites was identical to hydroxyapatite (Ca10[PO4]6[OH]2), the major inorganic component of bone. Osteopontin is a phosphorylated glycoprotein with known involvement in the formation and calcification of bone and is regulated by local cytokines. Human coronary artery segments (14 normal and 34 atherosclerotic) obtained at autopsy were evaluated immunohistochemically using polyclonal antibodies generated against human osteopontin. Immunohistochemistry for osteopontin indicated intense, highly specific staining in the outer margins of all diseased segments at each calcification front; staining was evident throughout the entire plaque. Conversely, arterial segments free of atheroma and calcification and sections treated with nonimmune serum had no evidence of positive staining. Osteopontin, a protein involved in mineralization is specifically associated with calcific coronary atheroma and may play an important role in the onset and progression of this disease in human coronary arteries. The deposition of noncollagenous proteins such as osteopontin may regulate the presence or absence of calcification and ultimately alter vessel compliance.
L A Fitzpatrick, A Severson, W D Edwards, R T Ingram
Gastrin-releasing peptide (GRP) is developmentally expressed in human fetal lung and is a growth factor for normal and neoplastic lung but its role in normal lung development has yet to be clearly defined. In this study we have characterized the expression of GRP and its receptor in fetal rhesus monkey lung and determined the effects of bombesin on fetal lung development in vitro. By RNA blot analysis, GRP mRNA was first detectable in fetal monkey lung at 63 days gestation, reached highest levels at 80 days gestation, and then declined to near adult levels by 120 days gestation; a pattern closely paralleling GRP expression in human fetal lung. As in human lung, in situ hybridization localized GRP mRNA to neuroendocrine cells though during the canalicular phase of development (between 63-80 days gestation) GRP mRNA was present not only in classic pulmonary neuroendocrine cells, but also in cells of budding airways. Immunohistochemistry showed that bombesin-like immunoreactivity was present in neuroendocrine cells, but not in budding airways, suggesting that in budding airways either the GRP mRNA is not translated, is rapidly secreted, or a related, but different RNA is present. RNase protection analysis using a probe to the monkey GRP receptor demonstrated that the time course of receptor RNA expression closely paralleled the time course of GRP RNA expression. In situ hybridization showed that GRP receptors were primarily expressed in epithelial cells of the developing airways. Thus GRP would appear to be secreted from neuroendocrine cells to act on target cells in developing airways. This hypothesis was confirmed by organ culture of fetal monkey lung in the presence of bombesin and bombesin antagonists. Bombesin treatment at 1 and 10 nM significantly increased DNA synthesis in airway epithelial cells and significantly increased the number and size of airways in cultured fetal lung. In fact, culturing 60 d fetal lung for 5 d with 10 nM bombesin increased airway size and number nearly to that observed in cultured 80 d fetal lung. The effects of bombesin could be blocked by specific GRP receptor antagonists. Thus this study demonstrates that GRP receptors are expressed on airway epithelial cells in developing fetal lung and that the interaction of GRP with the GRP receptor stimulates airway development.
K Li, S R Nagalla, E R Spindel
Glucose regulates the cellular content of glucokinase in the pancreatic beta cell by altering the level of the enzyme. We investigated the existence of a second regulatory pathway, an alteration in the catalytic activity, by comparing Vmax and protein levels of glucokinase in rat islets cultured under high glucose conditions (16.7 mM) for 6, 14, and 24 h. The Vmax was increased by glucose at all time points. In contrast, glucokinase protein levels on Western blots were unchanged from the control value at 6 h but increased 40% at the later time points (P < 0.0002). Further evidence for a dual regulatory system was obtained with a reversal protocol. After a 6-h incubation at high glucose, an additional 3-h incubation at 5.5 mM glucose restored glucokinase Vmax to normal, but failed to change the Vmax after a 24-h incubation at high glucose. Finally, 10 microM cycloheximide partially prevented the increase in glucokinase Vmax induced by 24 h of high glucose, but had no effect at 6 h, suggesting the early increase in enzymatic activity did not require protein synthesis. In summary, glucose regulates both the catalytic activity and cellular content of glucokinase in the beta cell. Glucose-induced increases in glucokinase activity are an important element of the beta cell adaptive response to hyperglycemia.
C Chen, H Hosokawa, L M Bumbalo, J L Leahy
The most effective way to limit myocardial ischemic necrosis is reperfusion, but reperfusion itself may result in tissue injury, which has been difficult to separate from ischemic injury. This report identifies elements of apoptosis (programmed cell death) in myocytes as a response to reperfusion but not ischemia. The hallmark of apoptosis, nucleosomal ladders of DNA fragments (approximately 200 base pairs), was detected in ischemic/reperfused rabbit myocardial tissue but not in normal or ischemic-only rabbit hearts. Granulocytopenia did not prevent nucleosomal DNA cleavage. In situ nick end labeling demonstrated DNA fragmentation predominantly in myocytes. The pattern of nuclear chromatin condensation was distinctly different in reperfused than in persistently ischemic tissue by transmission electron microscopy. Apoptosis may be a specific feature of reperfusion injury in cardiac myocytes, leading to late cell death.
R A Gottlieb, K O Burleson, R A Kloner, B M Babior, R L Engler
The transcription factor NF-kB may play an important role in the response to tissue injury and activation of cytokines. We therefore examined the regulation of NF-kB in mesangial cells. Treatment of mesangial cells with TNF-alpha increased nuclear proteins that bound to an NF-kB-specific DNA oligonucleotide. IgG aggregates also increased nuclear NF-kB demonstrating Fc-tau receptor-mediated activation of NF-kB. Treatment of a cytosolic preparation with the detergent deoxycholate also activated NF-kB. The binding characteristics were typical for NF-kB transcription factors as determined by competition experiments with NF-kB-binding wild type kB DNA oligonucleotides or mutated oligonucleotides. Furthermore, a monoclonal antibody against the p65 subunit of NF-kB prevented the binding of NF-kB to the kB oligonucleotide. To evaluate the potential role of reactive oxygen intermediates in the activation of NF-kB, we used PDTC as a scavenger and HMAP as an inhibitor of NADPH-dependent oxidase. Both PDTC and HMAP attenuated the increase in nuclear NF-kB in response to either TNF-alpha or IgG complexes. Finally, generation of superoxide anion by xanthine oxidase activated NF-kB, an effect also mitigated by PDTC. In contrast, exogenous H2O2 did not activate NF-kB. Preincubation of cells with 8 br-cAMP, forskolin, or PGE2 attenuated the increase in nuclear NF-kB in response to TNF-alpha, aggregated IgG, or superoxide anion. Our results provide support for a role of reactive oxygen intermediates as mediators for activation of NF-kB in MC after stimulation with TNF-alpha or IgG aggregates. As an unexpected novel finding we report that cAMP can inhibit activation of NF-kB in MC. These observations may help to explain effects of TNF-alpha, IgG aggregates and cAMP on generation of cytokines by mesangial cells and the resulting glomerular pathophysiology.
J Satriano, D Schlondorff
We recently isolated a proteoglycan form of macrophage colony-stimulating factor (PG-M-CSF) that carries a chondroitin sulfate glycosaminoglycan chain. Here, we examined the interaction of PG-M-CSF with low density lipoprotein (LDL). When LDL preincubated with PG-M-CSF was fractionated by molecular size sieving chromatography, it was eluted earlier than untreated LDL. When LDL was preincubated with chondroitin sulfate-free 85-kD M-CSF instead of PG-M-CSF, the elution profile of LDL remained unchanged, indicating specific interaction between PG-M-CSF and LDL. The level of PG-M-CSF binding in the wells of a plastic microtitration plate precoated with LDL was significant, this binding being completely abolished by pretreatment of PG-M-CSF with chondroitinase AC, which degrades chondroitin sulfate. The addition of exogenous chondroitin sulfate or apolipoprotein B inhibited the binding of PG-M-CSF to LDL in a dose-dependent manner, indicating that the interaction between PG-M-CSF and LDL was mediated by the binding of the chondroitin sulfate chain of PG-M-CSF to LDL apolipoprotein B. PG-M-CSF was also demonstrated in the arterial wall, and there were increased amounts of PG-M-CSF in atherosclerotic lesions. The in vitro interaction between PG-M-CSF and LDL thus appears to have physiological significance.
S Suzu, T Inaba, N Yanai, T Kawashima, N Yamada, T Oka, R Machinami, T Ohtsuki, F Kimura, S Kondo
We have investigated the basis of androgen resistance in seven unrelated individuals with complete testicular feminization or Reifenstein syndrome caused by single amino acid substitutions in the hormone-binding domain of the androgen receptor. Monolayer-binding assays of cultured genital skin fibroblasts demonstrated absent ligand binding, qualitative abnormalities of androgen binding, or a decreased amount of qualitatively normal receptor. The consequences of these mutations were examined by introducing the mutations by site-directed mutagenesis into the androgen receptor cDNA sequence and expressing the mutant cDNAs in mammalian cells. The effects of the amino acid substitutions on the binding of different androgens and on the capacity of the ligand-bound receptors to activate a reporter gene were investigated. Substantial differences were found in the responses of the mutant androgen receptors to incubation with testosterone, 5 alpha-dihydrotestosterone, and mibolerone. In several instances, increased doses of hormone or increased frequency of hormone addition to the incubation medium resulted in normal or near normal activation of a reporter gene by cells expressing the mutant androgen receptors. These studies suggest that the stability of the hormone receptor complex is a major determinant of receptor function in vivo.
M Marcelli, S Zoppi, C M Wilson, J E Griffin, M J McPhaul
Protein 4.1 has been defined as a major component of the subcortical skeleton of erythrocytes. It binds the spectrin--actin scaffold through a 10-kD internal domain. This binding requires an essential 21-amino acid sequence motif, Motif I, which is retained by alternative splicing at the late stage of erythroid differentiation. We here analyze the molecular basis of heterozygous 4.1(-) hereditary elliptocytosis, associated with protein 4.1 partial deficiency, in nine related French families. cDNA sequencing revealed a single codon deletion (AAA) resulting in a lysine residue deletion within the 10-kD binding domain, 3' of Motif I. The mutated allele was designated allele 4.1 Aravis. In order to assess the functional effect of the codon deletion, recombinant 10-kD constructs were made and various binding assays were performed using spectrin, purified spectrin-actin complex, or red cell membranes. These experiments demonstrated that the deletion of the Lys residue clearly prevents the binding capacity. Similar results were obtained with a construct containing the Lys residue but lacking Motif I. These data strongly suggest that the binding site to the spectrin-actin complex must contain the Lys 447 (or 448), and therefore resides not only on Motif I but extends 3' of this essential motif.
F Lorenzo, N Dalla Venezia, L Morlé, F Baklouti, N Alloisio, M T Ducluzeau, L Roda, P Lefrançois, J Delaunay
A mosaic pattern of immunoreactive fumarylacetoacetase (FAH) protein was found in liver tissue in 15 of 18 tyrosinemia type I patients of various ethnic origins. One additional patient had variable levels of FAH enzyme activity in liver tissue. In four patients exhibiting mosaicism of FAH protein, analysis for the tyrosinemia-causing mutations was performed in immunonegative and immunopositive areas of liver tissue by restriction digestion analysis and direct DNA sequencing. In all four patients the immunonegative liver tissue contained the FAH mutations demonstrated in fibroblasts of the patients. In the immunopositive nodules of regenerating liver tissue one of the mutated alleles apparently had reverted to the normal genotype. This genetic correction was observed for three different tyrosinemia-causing mutations. In each case a mutant AT nucleotide pair was reverted to a normal GC pair.
E A Kvittingen, H Rootwelt, R Berger, P Brandtzaeg
Recent advances in molecular genetics have revealed the mechanisms underlying a variety of inherited human disorders. Among them, mutations in G protein-coupled receptors have clearly demonstrated two types of abnormalities, namely loss of function and constitutive activation of the receptors. Thromboxane A2 (TXA2) receptor is a member of the family of G protein-coupled receptors and performs an essential role in hemostasis by interacting with TXA2 to induce platelet aggregation. Here we identify a single amino acid substitution (Arg60-->Leu) in the first cytoplasmic loop of the TXA2 receptor in a dominantly inherited bleeding disorder characterized by defective platelet response to TXA2. This mutation was found exclusively in affected members of two unrelated families with the disorder. The mutant receptor expressed in Chinese hamster ovary cells showed decreased agonist-induced second messenger formation despite its normal ligand binding affinities. These results suggest that the Arg60 to Leu mutation is responsible for the disorder. Moreover, dominant inheritance of the disorder suggests the possibility that the mutation produces a dominant negative TXA2 receptor.
T Hirata, A Kakizuka, F Ushikubi, I Fuse, M Okuma, S Narumiya
The present study addresses the feasibility of potentiating oral tolerance by immunomanipulation, using the murine model of experimental autoimmune uveoretinitis (EAU) induced by immunization with the retinal antigen interphotoreceptor retinoid binding protein (IRBP). Three feedings of 0.2 mg IRBP every other day before immunization did not protect against EAU, whereas a similar regimen of five doses was protective. However, supplementing the nonprotective 3x regimen with as little as one injection of 1,000 U of human recombinant interleukin-2 (IL-2) resulted in disease suppression that was equal to that of the protective 5x regimen. The protective effect was maintained across a range of IL-2 doses and times of administration; none of the IL-2 regimens tested resulted in disease enhancement. Peyer's Patch cells of 3x-fed and IL-2-treated mice showed greatly increased production of TGF-beta, IL-4, and IL-10 compared with animals given the nonprotective 3x regimen and to animals given the protective 5x regimen. We propose that IL-2 treatment enhances protection from EAU at least in part by stimulating production of antiinflammatory cytokines by regulatory cells in Payer's Patches. Moreover, the observed lymphokine production patterns suggest that whereas protection induced by the 3x + IL-2 regimen is likely to involve antiinflammatory cytokines, protection induced by the 5x regimen might involve anergy or deletion of the uveitogenic T cells. These results could have practical implications for use of IL-2 as a safe and effective way of potentiating oral tolerance.
L V Rizzo, N E Miller-Rivero, C C Chan, B Wiggert, R B Nussenblatt, R R Caspi
The hormonal form of vitamin D, 1,25(OH)2D, is synthesized mostly in proximal renal tubular cells. Experimental and clinical studies suggest that the growth hormone may be involved in growth-related fluctuations of plasma 1,25(OH)2D and in the increase of 1,25(OH)2D induced by in vivo phosphate deprivation, an action possibly mediated by insulin-like growth factor 1 (IGF 1). We tested the effects of phosphate depletion and IGF 1 addition on 1,25(OH)2D3 production in cultured kidney cells: opossum kidney (OK) cells, LLC-PK 1, and rabbit's proximal tubular cells. Confluent cell monolayers were preincubated in various phosphate concentrations, in the presence and absence of IGF 1. Then, 5 nM of [3H]25 (OH)D3 or 2 microM of 25 (OH)D3 were added to the medium and the cells were incubated for a further 120 min. The amount of biosynthesized 1,25(OH)2D3 in lipid extracts was determined after two different straight phase high performance liquid chromatographies. The experiment showed the following: (a) LLC-PK 1 and rabbit's cells expressed a detectable ability to synthesize 1,25(OH)2D3, while OK cells did not. (b) Partial or total phosphate deprivation increased the amount of 1,25(OH)2D3 produced, respectively in LLC-PK 1 and in rabbit's cells. (c) IGF 1 (25 ng/ml) increased 1,25(OH)2D3 production in rabbit's cells, particularly in phosphate-free medium (1.6-fold), and in LLC-PK 1 cells, in partial phosphate depletion (2.75-fold in 1 mM phosphate, P = 0.015, n = 5, and 3.2-fold in 0.5 mM phosphate, P = 0.043, n = 4). Our findings demonstrate a local action of phosphate depletion and of IGF 1 on 1,25-dihydroxyvitamin D3 production.
L Condamine, C Menaa, F Vrtovsnik, G Friedlander, M Garabédian
G-proteins are membrane-bound signal transduction proteins which couple extracellular receptor signals to various effectors. This study examines the expression and the function of G-proteins (alpha i, alpha s, alpha q, and alpha o) in experimental intimal hyperplasia. Vein bypass grafts were placed in 30 New Zealand White rabbits and were harvested after 28 d. The contralateral jugular veins served as controls. Isometric tension studies were performed on rings from veins and vein grafts (n = 10), and Western blot and mRNA analyses were performed in another 20 vessels. There was a fivefold increase in alpha q, a 2.7-fold increase in the alpha i2, and a 3.3-fold increase in alpha s expressions in vein grafts compared with veins. Detectable expression of alpha i3 was observed in vein grafts but not in jugular veins. In addition, there was a 3.8-fold increase in beta subunits in the vein grafts compared with the veins. mRNA for alpha s, alpha i3, and alpha i2 were all elevated in the vein grafts. No detectable levels of the alpha i1 protein or its mRNA were present in either veins or vein grafts. Contractile responses in the veins were not inhibited by pertussis toxin. The contractile responses to norepinephrine were enhanced by twofold, and the responses to serotonin developed de novo in vein grafts compared with veins. The contractile responses to both norepinephrine and serotonin were only partially inhibited by pertussis toxin in the vein grafts even though there was 100% ADP ribosylation with pertussis toxin in both veins and vein grafts. These data suggest that intimal hyperplasia is associated with increased or novel expression of G-proteins in vivo which occur simultaneously with the development of pertussis toxin-sensitive contractile responses. Changes in G-proteins at a transcriptional level or at the level of RNA stability may be involved in the response of smooth muscle cells to injury and to intimal hyperplasia formation.
M G Davies, V Ramkumar, T W Gettys, P O Hagen
Tamoxifen is an antiestrogen frequently used in the treatment of breast cancer and is currently being assessed as a prophylactic for those at high risk of developing tumors. We have found that tamoxifen and its derivatives are high-affinity blockers of specific chloride channels. This blockade appears to be independent of the interaction of tamoxifen with the estrogen receptor and therefore reflects an alternative cellular target. One of the clinical side effects of tamoxifen is impaired vision and cataract. Chloride channels in the lens of the eye were shown to be essential for maintaining normal lens hydration and transmittance. These channels were blocked by tamoxifen and, in organ culture, tamoxifen led to lens opacity associated with cataracts at clinically relevant concentrations. These data suggest a molecular mechanism by which tamoxifen can cause cataract formation and have implications for the clinical use of tamoxifen and related antiestrogens.
J J Zhang, T J Jacob, M A Valverde, S P Hardy, G M Mintenig, F V Sepúlveda, D R Gill, S C Hyde, A E Trezise, C F Higgins
Clearance of excess cholesterol from cells by HDL is facilitated by the interaction of HDL apolipoproteins with cell-surface binding sites or receptors, a process that may be important in preventing atherosclerosis. In this study, synthetic peptides containing 18-mer amphipathic helices of the class found in HDL apolipoproteins (class A) were tested for their abilities to remove cholesterol and phospholipid from cultured sterol-laden fibroblasts and macrophages and to interact with cell-surface HDL binding sites. Lipid-free peptides containing two identical tandem repeats of class A amphipathic helices promoted cholesterol and phospholipid efflux from cells and depleted cellular cholesterol accessible for esterification by acyl CoA/cholesterol acyltransferase, similar to what was observed for purified apolipoprotein A-I. Peptide-mediated removal of plasma membrane cholesterol and depletion of acyl CoA/cholesterol acyltransferase-accessible cholesterol appeared to occur by separate mechanisms, as the latter process was less dependent on extracellular phospholipid. The dimeric amphipathic helical peptides also competed for high-affinity HDL binding sites on cholesterol-loaded fibroblasts and displayed saturable high-affinity binding to the cell surface. In contrast, peptides with a single helix had little or no ability to remove cellular cholesterol and phospholipid, or to interact with HDL binding sites, suggesting that cooperativity between two or more helical repeats is required for these activities. Thus, synthetic peptides comprising dimers of a structural motif common to exchangeable apolipoproteins can mimic apolipoprotein A-I in both binding to putative cell-surface receptors and clearing cholesterol from cells.
A J Mendez, G M Anantharamaiah, J P Segrest, J F Oram