Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Generation and characterization of two human alpha/beta T cell clones. Recognizing autologous breast tumor cells through an HLA- and TCR/CD3-independent pathway.
P Nisticò, … , I Venturo, P G Natali
P Nisticò, … , I Venturo, P G Natali
Published October 1, 1994
Citation Information: J Clin Invest. 1994;94(4):1426-1431. https://doi.org/10.1172/JCI117479.
View: Text | PDF
Research Article

Generation and characterization of two human alpha/beta T cell clones. Recognizing autologous breast tumor cells through an HLA- and TCR/CD3-independent pathway.

  • Text
  • PDF
Abstract

Cell-mediated immune response to breast tumor has only been marginally investigated. To gain insight into this issue we have developed two clones of distinct phenotype, CD3+ alpha/beta, CD4+, CD8-, CD16-, and CD3+ alpha/beta, CD4-, CD8+, CD16-, respectively, from peripheral blood lymphocytes (PBL) of a breast cancer patient. These effectors, selected on the basis of their cytolytic activity against autologous tumor cells and lack of lysis on NK-sensitive cell lines, preferentially recognize autologous tumor cells. The two clones' cytotoxic activity, while inhibited by anti-LFA-1 mAb, could not be abolished by mAbs to CD3, to class I and class II MHC molecules, and by mAbs to molecules involved in T cell function (i.e., CD4, CD8, CD2). The molecular structure of the alpha and beta T cell receptor chains of the two effector cells, confirmed their clonality and showed that, despite an overlapping killing pattern, they possess distinct TCR alpha and beta chains. These findings demonstrate that breast tumor-specific CTL clones can be generated through current technology and that a alpha/beta effector cell population operating through a HLA-unrestricted and TCR/CD3-independent pathway may be involved in the identification and killing of this tumor.

Authors

P Nisticò, P De Berardinis, S Morrone, T Alonzi, C Buono, I Venturo, P G Natali

×

Full Text PDF

Download PDF (1.20 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts