Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Activation and attenuation of transcription factor NF-kB in mouse glomerular mesangial cells in response to tumor necrosis factor-alpha, immunoglobulin G, and adenosine 3':5'-cyclic monophosphate. Evidence for involvement of reactive oxygen species.
J Satriano, D Schlondorff
J Satriano, D Schlondorff
Published October 1, 1994
Citation Information: J Clin Invest. 1994;94(4):1629-1636. https://doi.org/10.1172/JCI117505.
View: Text | PDF
Research Article

Activation and attenuation of transcription factor NF-kB in mouse glomerular mesangial cells in response to tumor necrosis factor-alpha, immunoglobulin G, and adenosine 3':5'-cyclic monophosphate. Evidence for involvement of reactive oxygen species.

  • Text
  • PDF
Abstract

The transcription factor NF-kB may play an important role in the response to tissue injury and activation of cytokines. We therefore examined the regulation of NF-kB in mesangial cells. Treatment of mesangial cells with TNF-alpha increased nuclear proteins that bound to an NF-kB-specific DNA oligonucleotide. IgG aggregates also increased nuclear NF-kB demonstrating Fc-tau receptor-mediated activation of NF-kB. Treatment of a cytosolic preparation with the detergent deoxycholate also activated NF-kB. The binding characteristics were typical for NF-kB transcription factors as determined by competition experiments with NF-kB-binding wild type kB DNA oligonucleotides or mutated oligonucleotides. Furthermore, a monoclonal antibody against the p65 subunit of NF-kB prevented the binding of NF-kB to the kB oligonucleotide. To evaluate the potential role of reactive oxygen intermediates in the activation of NF-kB, we used PDTC as a scavenger and HMAP as an inhibitor of NADPH-dependent oxidase. Both PDTC and HMAP attenuated the increase in nuclear NF-kB in response to either TNF-alpha or IgG complexes. Finally, generation of superoxide anion by xanthine oxidase activated NF-kB, an effect also mitigated by PDTC. In contrast, exogenous H2O2 did not activate NF-kB. Preincubation of cells with 8 br-cAMP, forskolin, or PGE2 attenuated the increase in nuclear NF-kB in response to TNF-alpha, aggregated IgG, or superoxide anion. Our results provide support for a role of reactive oxygen intermediates as mediators for activation of NF-kB in MC after stimulation with TNF-alpha or IgG aggregates. As an unexpected novel finding we report that cAMP can inhibit activation of NF-kB in MC. These observations may help to explain effects of TNF-alpha, IgG aggregates and cAMP on generation of cytokines by mesangial cells and the resulting glomerular pathophysiology.

Authors

J Satriano, D Schlondorff

×

Full Text PDF

Download PDF (2.20 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts