J C Unkeless
The three widely distributed peptides derived from prosomatostatin are the original neurohormone somatostatin-14, somatostatin-28, and somatostatin-28(1-12), which are all derived from the COOH terminus of the precursor. Recently a decapeptide derived from the NH2 terminus of the prohormone has been identified in extracts of rat gastric antrum and named antrin. Data now show that in both rats and humans this new molecular form is concentrated in the D cell of the gastrointestinal mucosa together with somatostatin-28(1-12). The highest concentration of antrin immunofluorescent cells is located in the mucosa of the gastric antrum. Ultrastructural studies performed on pyloric D cells using the protein A-gold technique reveals that antrin is present in the same secretory granules as somatostatin-28(1-12) and detectable in one-third of all secretory granules. Acid extracts of rat hepatic portal plasma contain a peptide similar or identical to antrin, indicating that the antral decapeptide circulates in blood.
M Ravazzola, R Benoit, N Ling, L Orci
Previous studies performed in this laboratory have demonstrated somatostatin-containing cells in close proximity to gastrin cells in antral mucosa and have shown that somatostatin exerts a local regulatory effect on gastrin release. The present studies were directed to determine whether the effects of somatostatin on the antral gastrin cell involve pretranslational events. The effects of somatostatin on gastrin mRNA were determined by dot blot hybridization using a gastrin antisense RNA probe derived from human gastrin cDNA. Inclusion of somatostatin in the incubation medium caused a dose-dependent inhibition of steady-state gastrin mRNA. Conversely, when antral somatostatin was neutralized by the addition of specific somatostatin antibodies to the incubation medium, gastrin mRNA levels increased by 116 +/- 31% over control values (P less than 0.01). Northern blot hybridization of total antral RNA demonstrated a single major band with a molecular size of approximately 620 nucleotides, closely matching the predicted size of gastrin mRNA. The effect of somatostatin on the rate of gastrin gene transcription was examined using nuclear run-off transcription assays. Inclusion of antibodies to somatostatin in the incubation medium resulted in a 33.8 +/- 3.3% increase in gastrin gene transcriptional activity (P less than 0.01). These studies indicate that, in addition to its established effect on peptide release, somatostatin exerts inhibitory effects on antral gastrin cells at the pretranslational level. Although this inhibition appears to occur in part at the gene transcriptional level, the results also indicate that somatostatin may affect posttranscriptional processing of gastrin mRNA.
P S Karnik, S J Monahan, M M Wolfe
PTH stimulates active Ca reabsorption in isolated perfused rabbit kidney connecting tubules (CNTs). The existence of PTH-sensitive adenylate cyclase and the reproduction of increased epithelial Ca transport by dibutyryl-cAMP suggest that cAMP is the mediator. Accordingly, we studied the effects of PTH and 8-bromoadenosine 3',5'-cAMP (8-Br-cAMP) on cytosolic free calcium concentration [( Ca2+]i) in individual rabbit CNTs. [Ca2+]i was estimated by continuous epifluorescence microscopy of single fura-2-loaded tubules during dual wave-length excitation. In nonperfused controls at 37 degrees C, [Ca2+]i decreased with time. In contrast to vehicle controls, synthetic bovine (1-34) PTH (0.1 nM) increased [Ca2+]i within 4 min, produced a maximal effect in 7.2 min, and sustained its effect for at least 2 min after washout. 8-Br-cAMP (1 mM) mimicked the effect of PTH, but with an earlier onset of action. To test the hypothesis that lumen Ca is the predominant source of the rise in [Ca2+]i, we studied singly perfused CNTs. In the absence of bath and lumen Ca, PTH elicited no rise in [Ca2+]i, implying that intracellular Ca stores are not the major source. In contrast, there was a rise when Ca was replenished in both media. In the continuous presence of bath Ca, lumen Ca was estimated to contribute 65% of the total rise in [Ca2+]i in response to PTH when it was first deleted and then replenished. However, when the sequence of lumen Ca manipulation was reversed, the contributions by lumen and bath Ca were found to be essentially equal. We conclude (a) at a physiologic concentration, PTH increases [Ca2+]i in rabbit CNTs, (b) 8-Br-cAMP mimics this action, implicating cAMP as a second messenger, and (c) the PTH-stimulated rise in [Ca2+]i depends importantly on both bath and tubular luminal fluid Ca.
J E Bourdeau, K Lau
Prostacyclin (PGI2) is an inhibitor of platelet function in vitro. We tested the hypothesis that PGI2 is formed in biologically active concentrations at the platelet-vascular interface in man and can be pharmacologically modulated to enhance its inhibitory properties. This became feasible when we developed a microquantitative technique that permits the measurement of eicosanoids in successive 40-microliters aliquots of whole blood emerging from a bleeding time wound. In 13 healthy volunteers the rate of production of thromboxane B2 (TXB2) gradually increased, reaching a maximum of 421 +/- 90 (mean +/- SEM) fg/microliters per s at 300 +/- 20 s. The hydration product of PGI2, 6-keto-PGF1 alpha, rose earlier and to a lesser degree, reaching a peak (68 +/- 34 fg/microliters per s) at 168 +/- 23 s. The generation of prostaglandins PGE2 and D2 resembled that of PGI2. Whereas the threshold concentration of PGI2 for an effect on platelets in vitro is approximately 30 fg/microliters, only less than 3 fg/microliters circulates under physiological conditions. By contrast, peak concentrations of 6-keto-PGF1 alpha obtained locally after vascular damage averaged 305 fg/microliters. Pharmacological regulation of PG endoperoxide metabolism at the platelet-vascular interface was demonstrated by administration of a TX synthase inhibitor. The rate of production of PGI2, PGE2, and PGD2 increased coincident with inhibition of TXA, as reflected by three indices; the concentration of TXB2 in bleeding time blood and serum, and excretion of the urinary metabolite, 2,3-dinor-TXB2. These studies indicate that PGI2 is formed locally in biologically effective concentrations at the site of vessel injury and provide direct evidence in support of transcellular metabolism of PG endoperoxides in man.
J Nowak, G A FitzGerald
The relationships between extracellular pH (pHo), intracellular pH (pHi), and loss of cell viability were evaluated in cultured rat hepatocytes after ATP depletion by metabolic inhibition with KCN and iodoacetate (chemical hypoxia). pHi was measured in single cells by ratio imaging of 2',7'-biscarboxy-ethyl-5,6-carboxyfluorescein (BCECF) fluorescence using multiparameter digitized video microscopy. During chemical hypoxia at pHo of 7.4, pHi decreased from 7.36 to 6.33 within 10 min. pHi remained at 6.1-6.5 for 30-40 min (plateau phase). Thereafter, pHi began to rise and cell death ensued within minutes, as evidenced by nuclear staining with propidium iodide and coincident leakage of BCECF from the cytoplasm. An acidic pHo produced a slightly greater drop in pHi, prolonged the plateau phase of intracellular acidosis, and delayed the onset of cell death. Inhibition of Na+/H+ exchange also prolonged the plateau phase and delayed cell death. In contrast, monensin or substitution of gluconate for Cl- in buffer containing HCO3- abolished the pH gradient across the plasma membrane and shortened cell survival. The results indicate that intracellular acidosis after ATP depletion delays the onset of cell death, whereas reduction of the degree of acidosis accelerates cell killing. We conclude that intracellular acidosis protects against hepatocellular death from ATP depletion, a phenomenon that may represent a protective adaptation against hypoxic and ischemic stress.
G J Gores, A L Nieminen, B E Wray, B Herman, J J Lemasters
Strains of Neisseria gonorrhoeae were used to evaluate bactericidal and opsonic properties of McAb 10 directed against the Neisserial outer membrane antigen, H.8. Gonococci were either serum resistant in the absence but serum sensitive in the presence, of McAb 10, or serum sensitive or serum resistant regardless of the presence of McAb 10. Strain JS3, which fell in the former category, was used in subsequent studies. C1 zymogen formed by reassociation of isolated C1 subunits was not directly activated by JS3 in the presence or absence of C1-inhibitor. JS3 thus was unable to directly activate the classical pathway independently of antibody. When purified classical pathway components were used to deposit C3 on JS3 in the absence of serum regulatory proteins or antibodies, added C1-inhibitor reduced C3 binding to background levels. When McAb 10 was present, C3 binding was unaffected by C1-inhibitor. Covalently bound, large molecular weight C3 alpha-chain-gonococcal complexes were disbanded by methylamine release of ester linkages. Released 125I-C3 migrated as C3b without degradation by gonococcal proteases. Purified classical components alone or McAb 10 alone facilitated JS3 killing by neutrophils; when combined, the two provided maximal killing. Levels of McAb 10 that only slightly increase C3 deposition on JS3 are bactericidal in serum and maximally opsonic in combination with purified classical pathway components.
J E Schweinle, P J Hitchcock, A J Tenner, C H Hammer, M M Frank, K A Joiner
Thalassemic red cells show irregular morphology and maldistribution of glycoproteins and sialic acids. These changes are compatible with damage to the red cell membrane skeleton. To test this possibility, we systematically studied the interconnections of skeletal proteins in patients with a form of alpha thalassemia (HbH disease), in patients with beta thalassemia intermedia, and in normal individuals. Alpha- and beta-thalassemic spectrin functions normally in spectrin self-association, binding to normal inside-out vesicles (IOVs), and binding to actin in the presence and absence of normal protein 4.1. Binding of normal spectrin to beta: thalassemic IOVs is normal but alpha-thalassemic IOVs are defective and bind only half the normal amount of spectrin (66 +/- 5 vs. 120 +/- 16 micrograms spectrin dimer/mg IOV protein, respectively). A different defect is detected in beta thalassemia, in which protein 4.1 shows markedly reduced ability (48 +/- 7% of normal) to enhance the binding of normal spectrin to actin and a decreased ability to bind normal spectrin in a binary interaction, compared with normal protein 4.1 (24 +/- 1 and 43 +/- 1 micrograms protein 4.1/mg spectrin, respectively). As no quantitative deficiency of beta-thalassemic protein 4.1 is detected, we assume an acquired lesion is present, which affects about half of the protein 4.1 molecules. These findings indicate that specific, localized, yet different defects exist in the skeletal proteins of alpha- and beta-thalassemic red cells. The different molecular lesions imply that the mechanism of hemolysis and probably the interaction of unpaired globin chains with the membrane differs in the two diseases.
E Shinar, E A Rachmilewitz, S E Lux
Recent observations suggest that the hepatic uptake of oleate may be sodium coupled. To assess the electrochemical forces driving fatty acid uptake, we used microelectrodes to monitor continuously the electrical potential difference across the plasma membrane in the perfused rat liver while simultaneously monitoring the rate of tracer [3H]oleate uptake from 1% albumin solutions. Isosmotic cation or anion substitution was used to vary the potential difference over the physiologic range. Depolarization of cells from -29 to -19 mV by substituting gluconate for chloride reduced steady-state oleate uptake by 34%. Conversely, hyperpolarization of cells to -52 mV by substituting nitrate for chloride increased uptake by 41%. Replacement of perfusate sodium with choline depolarized the cells to -18 mV and reduced uptake by 58%, an amount greater than expected from the degree of depolarization alone. Oleate in higher concentrations (1.5 mM in 2% albumin) depolarized cells by 3 mV in the presence of sodium, but had no effect in sodium-free buffer. These results suggest that a portion of oleate uptake in the intact liver occurs by electrogenic sodium cotransport. Uptake appears to be driven by both the electrical and sodium chemical gradients across the plasma membrane.
R A Weisiger, J G Fitz, B F Scharschmidt
Previous reports indicate that human hepatocytes do not express class I and class II MHC antigens. Our analyses on 10 human hepatocellular carcinoma (HCC) cell lines by immunofluorescence tests and RIA, demonstrate that all the human HCC cell lines tested express class I MHC antigens and among them, three poorly differentiated human HCC cell lines also express class II MHC antigens. Results of immunoprecipitation and/or Western blotting experiments indicate similarity in the chemical nature of both the class I and class II MHC antigens expressed by the human HCC cell lines and by a human B lymphoblastoid cell line Raji. Furthermore, a new variant form of class I antigen was detected in some of these HCC cell lines. Immunohistochemical studies of HCC tissues using the peroxidase-antiperoxidase staining method indicated that class I and class II antigens were detectable in 7 out of 11 and 3 out of 11 HCC tissues from patients, respectively. The availability of MHC class I antigen-positive cultured HCC cell lines, including the poorly differentiated lines that also express MHC class II antigen, has provided us with interesting models to study the relationship between expression of MHC antigen and transformation and differentiation of human hepatocytes. These studies will also allow us some insight into the role of MHC class I and class II antigen in the immunosensitivity and immunogenicity of HCC cells to the host-immune response.
C H Sung, C P Hu, H C Hsu, A K Ng, C K Chou, L P Ting, T S Su, S H Han, C M Chang
This study was conducted as part of an investigation to evaluate the hypothesis that bacterial toxins (LPS or lipoteichoic acid), acting on macrophage-like uterine decidua to cause increased formation of cytokines, may be involved in the pathogenesis of infection-associated preterm labor. We found that cachectin/tumor necrosis factor-alpha (TNF-alpha) was synthesized and secreted into the culture medium by human decidual cells and explants in response to treatment with LPS. LPS treatment also caused an increase in PGF2 alpha production by decidual cells and explants. In amnion cells in monolayer culture, TNF-alpha stimulated PGE2 formation, and TNF-alpha was cytostatic (inhibited [3H]thymidine incorporation into DNA) but not cytolytic in amnion cells. TNF-alpha was not detectable (less than 0.34 ng/ml) in the amniotic fluid of normal pregnancies at midtrimester or at term before or after the onset of labor (n = 44); but TNF-alpha was present at concentrations between 2.8 and 22.3 ng/ml in amniotic fluids of 4 of 20 pregnancies with intact membranes complicated by preterm labor (less than 34 wk gestational age). LPS was present in 10 of the 20 amniotic fluids of preterm labor pregnancies, including all four in which TNF-alpha was present. Bacteria were identified in only one of the four LPS-positive, TNF-alpha-positive fluids. Cytokine formation in macrophage-like decidua may serve a fundamental role in the pathogenesis of preterm labor, including increased prostaglandin formation and premature rupture of the membranes.
M L Casey, S M Cox, B Beutler, L Milewich, P C MacDonald
The present study examines the effects of phytohemagglutinin stimulation of a population of human (h) PBMC enriched in lymphocytes (hPBMC) on D-glucose displaceable cytochalasin B binding sites or medium-affinity sites (M-sites) in relation to glucose transport. Previously we have shown that M-sites are glucose transporters in hPBMC (Mookerjee, B.K., et al. 1981. J. Biol. Chem. 256:1290-1300). Equilibrium exchange of 3-O-methyl D-glucose in unstimulated cells revealed two populations with fast and slow flux rates. Phytohemagglutinin stimulates flux rates by converting part of the slow flux population to the fast flux population. M-sites occur in two distinct pools, one in plasma membrane and the other in microsomal fraction. Phytohemagglutinin treatment increases the plasma membrane pool size of M-sites with a concomitant reduction in the microsomal pool size without affecting the binding affinities or the total number of M-sites/cell. Data presented in this paper demonstrate that there are two pools of glucose transporters in these cells and phytohemagglutinin stimulation induces an energy-dependent net translocation of glucose transporters from an intracellular reserve pool to the plasma membrane, which accounts for greater than 60% of the increment in glucose transport.
D B Jacobs, T P Lee, C Y Jung, B K Mookerjee
In an attempt to understand the regulatory mechanisms governing passage of neutrophils from the vascular bed to the interstitial tissue, we analyzed the effect of the pleiotropic monokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) on transendothelial neutrophil traffic. Short-time preincubation of human umbilical vein endothelial cell (HUVE) monolayers with IL-1 and TNF led to an impressive time- and dose-dependent increase of endothelial cell-associated neutrophils when working in a full plasma system on petri dishes. Electron microscopic analysis revealed junctional penetration of monolayers by neutrophils. More quantitatively, when using a monolayer-on-filter-system, priming led to a severalfold increase in complete layer passage occurring in the absence of an external chemotactic gradient. Direct comparison with an upside-down modification of the system together with data demonstrating the vectorial behavior of such migration revealed that IL-1-stimulated transendothelial neutrophil traffic is polarized. The described enhancement of neutrophil transendothelial passage was found to be a unique feature of IL-1/TNF-activated HUVE since HUVE-dependent transmigration potentiation was not observed as a consequence of mere neutrophil attachment to endothelial cells (e.g., induced by Fc-mediated adherence of PMN to HUVE). IL-1 acts selectively on endothelial cells as demonstrated by total inhibition of its effect by actinomycin D. Moreover, IL-1 does not induce HUVE monolayers to secrete a chemotaxin, and the neutrophil passage guiding principle is removable from the HUVE surface by short trypsin exposure. Congruent results were obtained with human adult arterial as well as saphenous vein endothelial cells. As shown by blockade of neutrophil migration with pertussis toxin, IL-1- and TNF-inducible transendothelial migration can be dissected into an initial anchoring step, which is succeeded by active neutrophil migration, possibly along a putative endothelial membrane-bound gradient.
R Moser, B Schleiffenbaum, P Groscurth, J Fehr
This study examines the role of phosphate metabolites in the regulation of mitochondrial oxygen consumption of the heart in vivo as a function of development. We used an open chest lamb/sheep preparation in which myocardial oxygen consumption (MVO2) was monitored via an extracorporeal shunt from the coronary sinus. Phosphate metabolites were monitored simultaneously using 31P nuclear magnetic resonance with a surface coil overlying the left ventricle. Graded infusions of epinephrine were used to increase MVO2 in both neonatal lambs (age 5-12 d, n = 8), and mature sheep (26-86 d, n = 6). The maximal increase in MVO2 achieved was 220 +/- 38% in the newborns and 350 +/- 66% in the mature animals. Associated with these increases in MVO2 in the newborn lambs are significant (P less than 0.001) decreases in PCr/ATP, and increases in calculated ADP and intracellular Pi. This was in contrast to the mature sheep, in which there were no significant changes in PCr/ATP, ADP, or Pi. In conclusion, we find that (a) there are changes in PCr/ATP, Pi, and ADP in newborn animals with moderate increases in work that are not apparent in mature animals of the same species and (b) that these changes suggest that cytosolic ATP hydrolysis products may be more important in regulation of myocardial energy metabolism in the newborn than in the adult.
M A Portman, F W Heineman, R S Balaban
Hypercholesterolemia was induced in New Zealand white rabbits by feeding them a 0.5% cholesterol-enriched rabbit chow for 2 wk. Half of the cholesterol-fed rabbits were given lovastatin, a potent inhibitor of hydroxymethylglutaryl-coenzyme A reductase (HMG-CoA reductase), the rate limiting enzyme in cholesterol biosynthesis, and the other half were given its vehicle (i.e., DMSO). At the end of 2 wk, the rabbits underwent experimental myocardial ischemia or a sham ischemia procedure. Ischemic animals fed the cholesterol-enriched diet for 2 wk experienced much greater cardiac damage than ischemic rabbits fed the control diet, despite the absence of any atherosclerosis. Lovastatin was shown to protect the ischemic rabbit myocardium by three different indices of ischemic damage: (a) maintenance of creatine kinase (CK) activity in the ischemic myocardium; (b) reduced loss of free amino-nitrogen containing compounds from the ischemic myocardium; and (c) blunting the rise of plasma CK activity. These effects were not due to differences in myocardial oxygen demand between the groups. Arteries isolated from animals fed the cholesterol-enriched diet developed defects in endothelium-dependent relaxation in both large vessels as well as coronary resistance vessels. Acute hypercholesterolemia increases the severity of myocardial ischemia while at the same time impairing endothelium-dependent relaxation. These deleterious changes can be significantly attenuated by treatment with lovastatin.
J A Osborne, P H Lento, M R Siegfried, G L Stahl, B Fusman, A M Lefer
We ligated the left anterior descending coronary artery for 1 or 2 h in 31 purebred beagles. We did not detect any changes in beta-adrenergic receptor density or affinity when normal and ischemic zones were compared, either in the subendocardium or in the subepicardium. In the ischemic zones, there was a significant decline in all measures of adenylate cyclase activity, including activity mediated by the beta-adrenergic receptor. By contrast, after chronic beta-adrenergic blockade (1.5 mg/kg propranolol i.v. twice daily for 7 d), there was an increase in adenylate cyclase activity stimulated by (-)-isoproterenol relative to adenylate cyclase activity stimulated by guanyl-5'imidodiphosphate (GppNHp) in both normal and ischemic tissue, suggesting that one effect of chronic beta blockade may be to enhance coupling between the stimulatory guanine nucleotide regulatory protein (Gs) and the beta-adrenergic receptor, despite a reduction in the number or function of Gs units. Chronic beta blockade also led to up regulation of beta-adrenergic receptor density in subepicardial regions. After 20 min of reperfusion following 2 h of ischemia, adenylate cyclase activity tended to return to control levels, particularly in the subepicardium, where (-)-isoproterenol-stimulated adenylate cyclase activity was not different from normal myocardium. We conclude that chronic beta-adrenergic blockade may have beneficial effects during prolonged episodes of myocardial ischemia by preserving signal transduction mediated by the beta-adrenergic receptor.
J S Karliner, M B Stevens, N Honbo, J I Hoffman
The hypotensive, natriuretic, and diuretic actions of human atrial natriuretic factor-(99-126) (hANF) are accompanied by an elevation of cyclic guanosine monophosphate (cGMP) in plasma and urine. However, the oxidized hANF analogue, human [Met-O110]ANF-(99-126) (Met-O-ANF), has been reported to be unable to increase cGMP (Biochem. Biophys. Res. Commun. 128: 538-546). We employed this oxidized peptide to evaluate the relationship between its biological effects and cGMP generation, with cGMP serving as a marker of the recognized property of ANF to stimulate particulate guanylate cyclase. Met-O-ANF appeared to be a partial agonist, exhibiting a decreasing order of relative potency of hypotensive, vasorelaxant, diuretic, and natriuretic functions compared to hANF. A lower degree of cGMP increases was achieved by this analogue in cultured smooth muscle and endothelial cells. Met-O-ANF doses, which led to a significant increase in diuresis, were neither natriuretic nor accompanied by an increase of urinary cGMP. We were thus able to dissociate the diuretic and natriuretic effects of ANF. High doses of the oxidized analogue were required to elevate cGMP levels in plasma and urine. In isolated kidney fractions, Met-O-ANF's action on cGMP was significantly lower in glomeruli (fivefold less), virtually absent in the collecting duct, yet only slightly different (20% less) in thick ascending limb. Our results indicate that the diuretic and natriuretic effects are exerted at distinct sites, with only the natriuresis being related to an increase of extracellular cGMP. The variability of differential potency of biological and biochemical effects from tissue to tissue of these two forms of human ANF support the notion of the heterogeneity of the ANF effector system.
R C Willenbrock, J Tremblay, R Garcia, P Hamet
In human recurrent herpetic lesions epidermal keratinocytes are induced to express HLA class II (DR) antigens. Keratinocytes derived from human split skin and cultured in vitro were induced to express HLA-DR but not -DQ antigens with IFN gamma preparations. These stimulated keratinocytes presented herpes simplex antigen directly to autologous blood-derived T lymphocytes in four of four subjects (stimulation indices: 1.5-2.7), suggesting that keratinocytes may have an accessory herpes simplex virus (HSV) antigen-presenting role in addition to the Langerhans cells and macrophages in herpetic skin lesions. Blood mononuclear cells from eight herpes simplex seropositive subjects which were activated in vitro by HSV antigen for 6 d showed cytotoxicity specific for HSV in infected autologous keratinocytes. This was significantly increased by prestimulation with IFN gamma (51-56% to 83-85%). In four of eight patients some cytotoxicity also occurred against uninfected, IFN gamma-stimulated keratinocytes. Lymphocyte subset analysis showed that cytotoxicity against HSV-infected, IFN gamma-stimulated keratinocyte targets was mediated by both CD3+ T lymphocytes and Leu 11b+ natural killer cells. T lymphocyte cytotoxicity was mediated by both CD4+ and CD8+ T lymphocytes, suggesting a cytotoxic role for the activated CD4+ lymphocytes that initially predominate in herpetic lesions.
A L Cunningham, J R Noble
We have determined the mutation in a child with partial adenosine deaminase (ADA) deficiency who is phenotypically homozygous for a mutant ADA gene encoding a heat-labile enzyme (Am. J. Hum. Genet. 38: 13-25). Sequencing of cDNA demonstrated a C to A transversion that results in the replacement of a proline by a glutamine residue at codon 297. As this mutation generated a new recognition site in exon 10 of genomic DNA for the enzyme Alu I, Southern blot analysis was used to establish that this child was indeed homozygous for the mutation. The abnormal restriction fragment generated by this mutation was also found in a second partially ADA-deficient patient who phenotypically is a genetic compound and also expresses a heat-labile ADA (in addition to a more acidic than normal ADA) (Am. J. Hum. Genet. 38: 13-25). Sequencing of cDNA clones from the second patient established the identical codon 297 mutation. Transfection of the mutant cDNA into heterologous cells resulted in expression of a heat-labile ADA of normal electrophoretic mobility and isoelectric point, properties exhibited by the ADA in the patients' cells.
R Hirschhorn, S Tzall, A Ellenbogen, S H Orkin
Plasmodium falciparum infecting hemoglobin (Hb) H and/or Hb Constant Spring erythrocytes in vitro was relatively more resistant than that infecting normal erythrocytes to artesunate and chloroquine, while the sensitivity to pyrimethamine was unchanged. The 50% inhibitory concentrations (IC50) for artesunate in HbH (alpha-thal 1/alpha-thal 2), HbH (alpha-thal 1/Hb Constant Spring), and homozygous Hb Constant Spring erythrocytes were 4.5 +/- 2.8, 8.5 +/- 3.2, and 2.6 +/- 1.6 nM compared with 0.82 +/- 0.35 nM in normal erythrocytes (P less than 0.002 for all three cases). The IC50 for chloroquine were 97 +/- 46, 162 +/- 67, and 93 +/- 36 nM, respectively, in the variant erythrocytes, compared with 48 +/- 13 nM in normal erythrocytes (P less than 0.002, 0.002, and 0.02, respectively). The differences in sensitivity to artesunate and chloroquine of the parasite infecting HbH erythrocytes are probably related to their oxidative mode of action and relatively high amounts of antioxidant enzymes in the host erythrocytes. This novel example of dependence on the host of the malarial parasite drug sensitivity may have implications for chemotherapy of malaria in patients with genetically variant erythrocytes.
Y Yuthavong, P Butthep, A Bunyaratvej, S Fucharoen
The severe complications of dengue virus infections, hemorrhagic manifestations and shock, are more commonly observed during secondary dengue virus infections than during primary infections. It has been speculated that these complications are mediated by cross-reactive host-immune responses. We have begun to analyze human T cell responses to dengue antigens in vitro to explain the possible role of T lymphocytes in the pathogenesis of these complications. Dengue antigens induce proliferative responses of PBMC from dengue antibody-positive donors, but do not induce specific proliferative responses of PBMC from dengue antibody-negative donors. IFN gamma is detected in the culture fluids of dengue-immune PBMC stimulated with dengue antigens. The cells that proliferate in the dengue antigen-stimulated bulk cultures have CD3+, CD4+, CD8-, CD16-, and CD20- phenotypes. Dengue-specific T cell lines were established using limiting dilution techniques. They have CD3+, CD4+, and CD8- phenotypes, and produce IFN gamma in response to dengue antigens. Culture fluids from dengue-immune PBMC stimulated with dengue antigens, which contain IFN gamma, augment dengue virus infection of human monocytes by dengue virus-antibody complexes. These results indicate that PBMC from dengue-immune donors contain CD4+ T cells that proliferate and produce IFN gamma after stimulation with dengue antigens, and suggest that the IFN gamma that is produced by these stimulated dengue-specific T cells may contribute to the pathogenesis of dengue hemorrhagic fever and dengue shock syndrome by increasing the number of dengue virus-infected monocytes in the presence of cross-reactive anti-dengue antibodies.
I Kurane, B L Innis, A Nisalak, C Hoke, S Nimmannitya, A Meager, F A Ennis
Neutrophil specific granule deficiency (SGD) is a congenital disorder associated with an impaired inflammatory response and a deficiency of several granule proteins. The underlying abnormality causing the deficiencies is unknown. We examined mRNA transcription and protein synthesis of two neutrophil granule proteins, lactoferrin and myeloperoxidase in SGD. Metabolically labeled SGD nucleated marrow cells produced normal amounts of myeloperoxidase, but there was no detectable synthesis of lactoferrin. Transcripts of the expected size for lactoferrin were detectable in the nucleated marrow cells of two SGD patients, but were markedly diminished in abundance when compared with normal nucleated marrow cell RNA. Because lactoferrin is secreted by the glandular epithelia of several tissues, we also assessed lactoferrin in the nasal secretions of one SGD patient by ELISA and immunoblotting. Nasal secretory lactoferrin was the same molecular weight as neutrophil lactoferrin and was secreted in normal amounts. From these data, we conclude that lactoferrin deficiency in SGD neutrophils is tissue specific and is secondary to an abnormality of RNA production. We speculate that the deficiency of several granule proteins is due to a common defect in regulation of transcription that is responsible for the abnormal myeloid differentiation seen in SGD patients.
K J Lomax, J I Gallin, D Rotrosen, G D Raphael, M A Kaliner, E J Benz Jr, L A Boxer, H L Malech
Most computer methods that quantify coronary artery disease from angiograms are designed to analyze frames recorded during the end-diastolic portion of the cardiac cycle. The purpose of this study was to determine if end diastole is the best portion of the cardiac cycle to sample, or if other sampling schemes produce more precise and/or reproducible estimates of coronary disease. 20 cinecoronary angiograms were selected at random from a controlled clinical trial testing the effects of plasma lipid lowering on atherosclerosis. Sampling schemes included sequential and random sampling of two to five frames within the complete cardiac cycle, systole, and diastole. Three vessel measures and percent stenosis were evaluated for each sampling scheme. From the sampling experiment, it was determined that sampling sequentially end diastole yielded the most precise estimates (i.e., exhibiting minimum variability within a cycle) of the vessel measures. With regard to reproducibility (i.e., similar values across cycles), sampling randomly within the cycle was best. Overall, the average diameter of a vessel segment was the most precise and the most reproducible of the measures. Sample size calculations are given for each of these measures under the best sampling scheme.
R H Selzer, C Hagerty, S P Azen, M Siebes, P Lee, A Shircore, D H Blankenhorn
Congenital adrenal hyperplasia (CAH) is caused by disorders of the P450c21B gene, which, with the P450c21A pseudogene, lies in the HLA locus on chromosome 6. The near identity of nucleotide sequences and endonuclease cleavage sites in these A and B loci makes genetic analysis of this disease difficult. We used a genomic DNA probe that detects the P450c21 genes (A pseudogene, 3.2 kb; B gene, 3.7 kb in Taq I digests) and the 3' flanking DNA not detected with cDNA probes (A pseudogene, 2.4 kb; B gene, 2.5 kb) to examine Southern blots of genomic DNA from 68 patients and 165 unaffected family members in 57 families with CAH. Of 116 CAH-bearing chromosomes, 114 could be sorted into five easily distinguished haplotypes based on blots of DNA digested with Taq I and Bgl II. Haplotype I (76 of 116, 65.6%) was indistinguishable from normal and therefore bore very small lesions, presumably point mutations. Haplotype II (4 of 116, 3.4%) and haplotype III (8 of 116, 6.9%) had deletions and duplications of the P450c21A pseudogene but had structurally intact P450c21B genes presumably bearing point mutations; point mutation thus was the genetic defect in 88 of 116 chromosomes (75.9%). Haplotypes IV and V lack the 3.7-kb Taq I band normally associated with the P450c21B gene. Haplotype IV (13 of 116, 11.2%) retains all other bands, indicating that the P450c21B gene has undergone a gene conversion event, so that it is now also associated with a 3.2-kb band. Haplotype V (13 of 116, 11.2%) lacks the 2.4-kb Taq I fragment and the 12-kb Bgl II fragments normally associated with the P450c21A pseudogene, as well as lacking the 3.7-kb Taq I fragment, indicating deletion of approximately 30 kb of DNA, resulting in a single hybrid P450c21A/B gene. Most (114 of 116, 98%) CAH alleles thus can easily be classified with this new probing strategy, eliminating many ambiguities resulting from probing with cDNA.
Y Morel, J André, B Uring-Lambert, G Hauptmann, H Bétuel, M Tossi, M G Forest, M David, J Bertrand, W L Miller
We evaluated the effect of estrogens on "free" and total calcitriol levels and on the calcitriol response to a hypocalcemic challenge in 12 postmenopausal women, age 55-74 yr. Endogenous calcitriol production was induced by intravenous Na-EDTA before and after conjugated estrogens, 1.25 mg/d for 30 d. Free calcitriol was determined by centrifugal ultrafiltration and by the molar ratio of calcitriol to vitamin D-binding protein (DBP). Estrogen increased fasting total calcitriol from 38.5 +/- 3.8 to 62.3 +/- 7.0 pg/ml (P less than 0.05). This was accompanied by a rise in free calcitriol from 104.5 +/- 11.4 to 158.7 +/- 16.4 fg/ml (P less than 0.05). Vitamin D-binding protein increased from 348 +/- 16 to 428 +/- 12 micrograms/ml (P less than 0.001), and the ratio of calcitriol/DBP increased from 1.50 +/- 0.14 to 1.94 +/- 0.18 (P less than 0.005), confirming the rise in free calcitriol. Increases in free calcitriol and in calcitriol/DBP ratios were significantly correlated, r = 0.72. Hypocalcemia led to a rapid increase in circulating immunoreactive parathyroid hormone, and to a rise in calcitriol at 24 h. The hypocalcemia-induced rise in total and free calcitriol was similar before and after estrogen, whether expressed as increments or as percent changes. We conclude that estrogen increases circulating levels of biologically active free calcitriol in postmenopausal women, but that a 30-d period of estrogen administration does not apparently improve the renal 1 alpha-hydroxylase response to a PTH challenge.
C Cheema, B F Grant, R Marcus
Transplantation studies have suggested that peripheral blood mononuclear cells contain precursors for osteoclasts. Thus we tested the capacity of peripheral blood monocytes to form osteoclasts in long-term culture. We have reported previously that mononuclear cells from feline, baboon, and human marrow form osteoclast-like cells in long term cultures. Further, the formation of these cells is increased in response to bone resorption stimulatory agents such as PTH, interleukin 1, and transforming growth factor alpha. We now report that these cells show characteristic cytoplasmic contraction with calcitonin and form resorption lacunae when cultured on sperm whale dentine. Thus, these bone marrow-derived multinucleated cells fulfill the functional criteria for osteoclasts. Although cultured peripheral blood monocytes can be induced to form multinucleated cells with 1,25-dihydroxyvitamin D3, these cells did not show similar responses to the osteotropic factors as multinucleated cells formed in the bone marrow cultures multinucleated cells. These results indicate that osteoclasts or cells closely related to osteoclasts form in long-term human bone marrow cultures. In contrast, few mononuclear cells in the peripheral blood appear capable of forming osteoclasts under the culture conditions used in these experiments.
N Takahashi, T Kukita, B R MacDonald, A Bird, G R Mundy, L M McManus, M Miller, A Boyde, S J Jones, G D Roodman
The kinetic changes induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) on hemopoietic cells were assessed in physiological conditions by administering GM-CSF (8 micrograms/kg per d) for 3 d to nine patients with solid tumors and normal bone marrow (BM), before chemotherapy. GM-CSF increased the number of circulating granulocytes and monocytes; platelets, erythrocytes, lymphocyte number, and subsets were unmodified. GM-CSF increased the percentage of BM S phase BFU-E (from 32 +/- 7 to 79 +/- 16%), day 14 colony-forming unit granulocyte-macrophage (CFU-GM) (from 43 +/- 20 to 82 +/- 11%) and day 7 CFU-GM (from 41 +/- 14 to 56 +/- 20%). The percentage of BM myeloblasts, promyelocytes, and myelocytes in S phase increased from 26 +/- 14 to 41 +/- 6%, and that of erythroblasts increased from 25 +/- 12 to 30 +/- 12%. This suggests that GM-CSF activates both erythroid and granulomonopoietic progenitors but that, among the morphologically recognizable BM precursors, only the granulomonopoietic lineage is a direct target of the molecule. GM-CSF increased the birth rate of cycling cells from 1.3 to 3.4 cells %/h and decreased the duration of the S phase from 14.3 to 9.1 h and the cell cycle time from 86 to 26 h. After treatment discontinuation, the number of circulating granulocytes and monocytes rapidly fell. The proportion of S phase BM cells dropped to values lower than pretreatment levels, suggesting a period of relative refractoriness to cell cycle-active antineoplastic agents.
M Aglietta, W Piacibello, F Sanavio, A Stacchini, F Aprá, M Schena, C Mossetti, F Carnino, F Caligaris-Cappio, F Gavosto
The influence of training-induced adaptations in skeletal muscle tissue on lipoprotein metabolism was investigated in six healthy men. The knee extensors were studied at rest and during exercise after 8 wk of dynamic exercise training of the knee extensors of one leg, while the other leg served as a control. The trained and nontrained thighs were investigated on different occasions. In the trained knee extensors, muscle (m) lipoprotein lipase activity (LPLA) was 70 +/- 29% higher compared with the nontrained (P less than 0.05), and correlated positively with the capillary density (r = 0.84). At rest there was a markedly higher arteriovenous (A-V) VLDL triacylglycerol (TG) difference over the trained thigh, averaging 55 mumol/liter (range 30-123), than over the nontrained, averaging 30 mumol/liter (4-72). In addition to the higher LPLA and VLDL-TG uptake in the trained thigh, a higher production of HDL cholesterol (C) and HDL2-C was also observed (P less than 0.05). Positive correlations between m-LPLA and A-V differences of VLDL-TG (r = 0.90; P less than 0.05) were observed only in the trained thigh. During exercise with the trained thigh the venous concentration of HDL2-C was invariably higher than the arterial, and after 110 min of exercise a production of 88 mumol/min (54-199) of HDL2-C was revealed. Even though a consistent degradation of VLDL-TG was not found during exercise, the total production of HDL-C across the trained and nontrained thigh, estimated from A-V differences times venous blood flow for the whole exercise period, correlated closely with the total estimated degradation of VLDL-TG (r = 0.91). At the end of 2 h of exercise m-LPLA did not differ from the preexercise value in either the nontrained or the trained muscle. We conclude that changes in the lipoprotein profile associated with endurance training to a large extent are explainable by training-induced adaptations in skeletal muscle tissue.
B Kiens, H Lithell
Isolated rat hepatocyte couplets (IRHC) are primary units of bile secretion that accumulate fluid in an enclosed canalicular space with time in culture. We have quantitated the rate of canalicular secretion in IRHC cultured for 4-8 h by measuring the change in canalicular space volume by video-microscopic optical planimetry using high resolution Nomarski optics. Electron microscopic morphometric studies revealed significant increases in canalicular membrane area after 4-6 h in culture. Canalicular secretion in basal L-15 medium (3.8 +/- 1.3 fl/min) increased significantly with the choleretic bile salts (10 microM), taurocholate, and ursodeoxycholate (14 +/- 7 fl/min each). Secretion rates after exposure to bile acids correlated directly with the canalicular surface area before stimulation. In contrast, expansion times after stimulation varied inversely with initial canalicular volumes. Ursodeoxycholic acid failed to produce a hypercholeresis at 10-, 100-, or 200-microM concentrations compared with taurocholate, either in normal or taurine-depleted IRHC. The present findings establish that rates of canalicular bile secretion can be quantitated in IRHC by serial optical planimetry, both in the basal state and after stimulation with bile acids. Furthermore, ursodeoxycholate does not acutely induce hypercholeresis at the canalicular level in this model. Rather, both taurocholic and ursodeoxycholic acids induced secretion in proportion to the surface area of the canalicular membrane. The IRHC are a useful model to identify canalicular choleretics and for studies of canalicular bile formation.
A Gautam, O C Ng, M Strazzabosco, J L Boyer
A fraction of the pro alpha 1(I) and pro alpha 2(I) chains in type I procollagen synthesized by the fibroblasts from a proband with a lethal variant of osteogenesis imperfecta were overmodified by posttranslational reactions. After digestion with pepsin, some of the alpha 1(I) chains were recovered as disulfide-linked dimers. Mapping of cyanogen bromide peptides indicated that the disulfide link was contained in alpha 1-CB6, the cyanogen bromide fragment containing amino acid residues 823-1014 of the alpha 1(I) chain. Nucleotide sequencing of cDNA clones demonstrated a substitution of T for G that converted glycine 904 of the alpha 1(I) chain to cysteine. A large fraction of the type I procollagen synthesized by the proband's fibroblasts had a thermostability that was 3-4 degrees C lower than the normal type I procollagen as assayed by brief proteinase digestion. In addition, the type I procollagen synthesized by the proband's fibroblasts was secreted with an abnormal kinetic pattern in that there was a lag period of about 30 min in pulse-chase experiments. The mutation of glycine to cysteine was not found in type I procollagen synthesized by fibroblasts from the proband's parents. Therefore, the mutation was a sporadic one. However, the mother's fibroblasts synthesized a type I procollagen in which part of the pro alpha chains were overmodified and had a lower thermostability. Therefore, the proband may have inherited a mutated allele for type I procollagen from her mother that contributed to the lethal phenotype. The mother was asymptomatic. She was somewhat short and had slightly blue sclerae but no definitive signs of a connective tissue abnormality. The observations on the mother indicated, therefore, that a mutation that causes synthesis of a type I procollagen with a lowered thermal stability does not necessarily produce a heritable disorder of connective tissue.
C D Constantinou, K B Nielsen, D J Prockop
Synovial inflammation is often associated with systemic changes, such as increased levels of acute phase proteins and hypergammaglobulinemia, which cannot be explained by the cytokines described in synovial fluids and synoviocyte secretions. Interleukin 6 (IL-6) has recently been characterized as a mediator of multiple inflammatory responses. This cytokine promotes T and B lymphocyte growth and differentiation, and acute phase protein synthesis. We therefore examined IL-6 production by human synoviocytes and its presence in synovial fluids. In vitro, synoviocytes spontaneously released IL-6, which was increased by IL-1 and tumor necrosis factor-alpha. Synoviocyte-derived IL-6 activity was able to induce hybridoma-plasmacytoma proliferation, and immunoglobulin and acute-phase protein synthesis. The synovial fluids from patients with diverse arthropathies contained IL-6 activity, but higher levels were present in inflammatory arthropathies than in osteoarthritis. These results demonstrate that synoviocytes are a potent source of IL-6, which can contribute to important manifestations of inflammatory arthropathies.
P A Guerne, B L Zuraw, J H Vaughan, D A Carson, M Lotz
The response of marrow stromal cells transformed with wild-type simian virus 40 to recombinant growth factors was examined. When transformed stromal cells were plated in semisolid medium without the addition of growth factors, only 0.4% of cells formed colonies while with the addition of recombinant factors such as interleukin 1 (IL-1) or tumor necrosis factor (TNF), up to 10% of the cells formed colonies. Colonies were individually plucked and cell lines were developed that could be analyzed for expression of growth factors. The data show that unstimulated marrow stromal cells lines produced no detectable colony-stimulating activity. However, cell lines derived from "autonomously growing colonies" and from colonies grown with T cell-conditioned medium, with IL-1 alpha or beta, or with TNF alpha produced colony-stimulating activity and transcripts for granulocyte/macrophage-colony-stimulating factor (CSF), granulocyte-CSF, and IL-1 beta. A novel feature of the cell lines derived from colonies was that the production of growth factors was constitutive and persisted in excess of 4 m.
J Nemunaitis, D F Andrews, C Crittenden, K Kaushansky, J W Singer
Previous studies in our laboratory and others have demonstrated in humans and other mammals two isozymes of arginase (AI and AII) that differ both electrophoretically and antigenically. AI, a cytosolic protein found predominantly in liver and red blood cells, is believed to be chiefly responsible for ureagenesis and is the one missing in hyperargininemic patients. Much less is known about AII because it is present in far smaller amounts and localized in less accessible deep tissues, primarily kidney. We now report the application of enzymatic and immunologic methods to assess the independent expression and regulation of these two gene products in normal tissue extracts, two cultured cell lines, and multiple organ samples from a hyperargininemic patient who came to autopsy after an unusually severe clinical course characterized by rapidly progressive hepatic cirrhosis. AI was totally absent (less than 0.1%) in the patient's tissues, whereas marked enhancement of AII activity (four times normal) was seen in the kidney by immunoprecipitation and biochemical inhibition studies. Immunoprecipitation-competition and Western blot analysis failed to reveal presence of even an enzymatically inactive cross-reacting AI protein, whereas Southern blot analysis showed no evidence of a substantial deletion in the AI gene. Induction studies in cell lines that similarly express only the AII isozyme indicated that its activity could be enhanced severalfold by exposure to elevated arginine levels. Our findings suggest that the same induction mechanism may well be operative in hyperargininemic patients, and that the heightened AII activity may be responsible for the persistent ureagenesis seen in this disorder. These data lend further support to the existence of two separate arginase gene loci in humans, and raise possibilities for novel therapeutic approaches based on their independent manipulation.
W W Grody, C Argyle, R M Kern, G J Dizikes, E B Spector, A D Strickland, D Klein, S D Cederbaum
HIV-1 infection in vitro of normal bone marrow mononuclear cells (BMMC) depleted of mature T cells was studied. BMMC depleted of either CD3, CD2, or both could replicate HIV-1 irrespective of the presence of macrophages/monocytes. Infected bone marrow cells were shown to differentiate during the culture into CD3+, CD4+, CD8+, and CD1+ cells, whereas noninfected BMMC gave rise to CD3+, CD4+, and CD8+ cells. Moreover, 9-14% of the cells also expressed the viral proteins p24 and gp120 on their surface. Double staining studies revealed that 72 and 83% of the CD4+ cells expressed the gp120 and p24, respectively, suggesting that virus replication occurred in CD4+ cells. T cell colony growth from infected BMMC, either unfractionated or depleted of mature T cells, was impaired in a time-dependent manner, and the differentiation capacity of T cell precursors was abnormal. Colony cells displayed an immature cell phenotype (CD1+ cells) and the viral proteins gp120 and/or p24 could also be detected on CD1+ cells. In addition, pooled colony cells derived from infected CD2- and CD3-depleted BMMC could infect normal mitogen-activated lymphocytes in coculture experiments. These findings strongly suggest that HIV-1 can infect immature bone marrow T cells and be transmitted to the progeny, but the massive viral replication occurs only when the cells differentiate toward CD4+ cells.
Y Lunardi-Iskandar, M T Nugeyre, V Georgoulias, F Barré-Sinoussi, C Jasmin, J C Chermann
The basolateral membrane Na+ and Cl(-)-dependent acid-base transport processes were studied in the isolated perfused rabbit S3 proximal straight tubule. Intracellular pH (pHi) was measured with 2'7'-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and a microfluorometer coupled to the tubule perfusion apparatus. Reduction of basolateral HCO3- from 25 to 5 mM caused pHi to decrease at a rate of 0.81 pH/min. Approximately 50% of this rate was Na+-dependent, 30% Cl(-)-dependent and 20% Na+ and Cl(-)-independent. Two basolateral Na+-dependent acid base transport pathways were detected: (a) an amiloride-sensitive Na+/H+ antiporter and (b) a stilbene-sensitive Na+/base cotransporter. No evidence was found for a Na+-dependent Cl-/base exchanger. The Cl(-)-dependent component of basolateral base efflux was mediated by a stilbene-sensitive Na+-independent Cl-/base exchange pathway. The results suggest that the acid base transport pathways of the basolateral membrane of the S3 proximal tubule differ from more proximal nephron segments.
I Kurtz
We determined human and canine plasma clearance of atrial natriuretic factor (ANF) by lung, liver, and kidney from arteriovenous differences in plasma ANF and measured organ plasma flow. Human subjects had lower plasma ANF concentrations in the pulmonary vein or the pulmonary capillary wedge position when compared with the pulmonary artery, and both sites yielded pulmonary ANF extraction ratios of 24%. Canine lung ANF extraction was 19 +/- 3% and pulmonary ANF clearance was 328 +/- 78 ml/min per m2 vs. 357 +/- 53 ml/min per m2 in man. Hepatic plasma ANF clearance was 216 +/- 26 ml/min with an extraction ratio of 30 +/- 3% in humans and 199 +/- 89 ml/min and 36 +/- 6% in the dog. Renal plasma ANF clearance in human subjects was 78 +/- 12 ml/min per kidney and correlated well with each kidney's creatinine clearance (r = 0.58, P less than 0.05). The mean renal ANF extraction ratio was 35 +/- 4% in human subjects and 42 +/- 6% in the dog. These data quantitate the specific organ ANF clearances by lung, liver, and kidney in human subjects and in dogs and provide a rationale for elevated plasma ANF levels in cirrhosis, renal failure, and diseases accompanied by reduced perfusion of these organs. These findings support the conclusion that plasma ANF concentrations are dependent upon both the stimuli for ANF secretion as well as the specific organ clearances of ANF.
A S Hollister, R J Rodeheffer, F J White, J R Potts, T Imada, T Inagami
Hyaluronic acid (HA) is believed to play a critical role in wound healing and in morphogenesis. Factors controlling the production of HA by fibroblasts in normal and pathological states are not completely understood. In this report we have observed that natural human interleukin (IL-1)1 beta and human recombinant (hrIL)-1 alpha and beta are potent stimulators of HA production by fibroblasts in vitro. Hyaluronic acid is the major species of glycosaminoglycan (GAG) stimulated by IL-1 in fibroblasts. PGE2 does not appear to be involved directly in this IL-1 effect on fibroblasts, but stimulation of HA production by IL-1 is dependent on protein synthesis. The synthetic human IL-1 beta peptide 163-171 (Val-Gln-Gly-Glu-Glu-Ser-Asn-Asp-Lys), which has been previously shown to stimulate thymocyte proliferation but not fibroblast PGE2 production, is also able to stimulate fibroblast HA production. The synthesis and secretion of IL-1 by mononuclear phagocytes at sites of inflammation and immune reactions in vivo could potentially serve as a signal for fibroblasts to synthesize HA, which in turn could serve to facilitate and modulate reparative and immune processes by virtue of its ability to alter cell-cell, cell matrix, and cell-membrane receptor interactions.
A E Postlethwaite, G N Smith Jr, L B Lachman, R O Endres, H M Poppleton, K A Hasty, J M Seyer, A H Kang
The process of neutrophil adhesion to and migration through the microvascular endothelium, an early event in the induction of the acute inflammatory response, has been attributed to the generation of extravascular chemoattractants. Although both chemotactic peptides and lipid mediators enhance neutrophil adherence in vitro and in vivo, the mechanism(s) involved in the interaction between circulating neutrophils and microvascular endothelial cells is still not completely understood. In a microtiter well adherence assay, the chemotactic peptides, FMLP and C5a, and the lipid mediators, leukotriene B4 (LTB4) and platelet activating factor (PAF), enhanced human neutrophil adherence to cultured human microvascular endothelial cells as well as to human umbilical vein endothelial cells in a dose-dependent manner with a rapid time course. This stimulated adhesive interaction between neutrophils and cultured human endothelial cells was dependent on the expression of the Mac-1, LFA-1, p150,95 glycoprotein family on the neutrophil surface since neutrophils from patients with leukocyte adhesion deficiency, lacking surface expression of the adhesive glycoproteins, exhibited markedly diminished adherence to human endothelial cells in response to stimulation with chemotactic factors compared to normal control neutrophils. All four mediators enhanced expression of the glycoprotein family on the surface of normal neutrophils as determined by flow cytofluorimetry using a monoclonal antibody (TS1/18) to the glycoprotein common beta subunit. In addition, TS1/18 inhibited up to 100% the adherence of normal neutrophils to endothelial cells stimulated by maximal concentrations of FMLP, C5a, LTB4, or PAF. Moreover, HL-60 cells, human promyelocytic leukemia cells, neither increased glycoprotein surface expression nor adherence in response to stimulation. Thus, peptide and lipid mediators of the acute inflammatory response appear to enhance adherence of circulating neutrophils to the microvascular endothelium by a mechanism dependent on expression of the Mac-1, LFA-1, p150,95 glycoprotein family on the neutrophil surface.
M G Tonnesen, D C Anderson, T A Springer, A Knedler, N Avdi, P M Henson
Articular cartilage destruction and loss of function in arthritic diseases involves proteolytic degradation of the connective tissue matrix. We have investigated the degradation of cartilage collagen by developing immunochemical methods that permit the identification and analysis of type II collagen degradation in situ. Previously, a technique to specifically identify type II collagen degradation in situ in articular cartilage did not exist. These methods utilize a polyclonal antiserum (R181) that specifically reacts with unwound alpha-chains and CNBr-derived peptides, alpha 1(II)CB11 and alpha 1(II)CB8, of human and bovine type II collagens. The experimental approach is based on the fact that when fibrillar collagens are cleaved the helical collagen molecule unwinds, exposing hidden epitopes. Here we demonstrate the use of R181 in studying type II collagen degradation in bovine articular cartilage that has been cultured with or without IL-1 and in human normal, rheumatoid, and osteoarthritic articular cartilages. Compared to cartilages either freshly isolated or cultured without IL-1, bovine cartilage cultured with IL-1 for 3-5 d showed an increase in both pericellular and intercellular immunohistochemical staining. Extracts of these cartilages contained type II collagen alpha chains that were increased in amount after culture with IL-1 for 11 d. In addition, culture with IL-1 resulted in the appearance of alpha chain fragments of lower molecular weight. All human arthritic tissues examined showed areas of pronounced pericellular and territorial staining for collagen degradation as compared with non-diseased tissues, indicating that chondrocytes are responsible in part for this degradation as compared with non-diseased tissues. In most cases rheumatoid cartilage was stained most intensely at the articular surface and in the deep and mid-zones, whereas osteoarthritic cartilage usually stained more in the superficial and mid-zones, but less intensely. Distinct patterns of sites of collagen degradation reflect differences in collagen destruction in these diseases, suggesting possible different sources of chondrocyte activation. These experiments demonstrate the application of immunological methods to detect collagen degradation and demonstrate an increase of collagen degradation in human arthritides and in IL-1-treated viable bovine cartilage.
G R Dodge, A R Poole
Androgens stimulate the development and growth of the male external genitalia. Because hypospadias is the most common congenital defect of the male urethra and because in most cases the cause of this malformation is unknown, we examined the hypothesis that the etiology of the severe forms of this disorder, which is frequently associated with other genital anomalies, might be explained by receptor abnormalities. Intracellular and nuclear binding of androgens were determined in cultured genital skin fibroblasts from 10 males who underwent circumcision for phimosis (controls A), 2 patients with 5 alpha-reductase deficiency (controls B), and 11 patients with severe forms of hypospadias of unknown etiology. Genital skin fibroblast monolayers were incubated for 60 min at 37 degrees C with varying concentrations of [3H]-dihydrotestosterone ([3H]DHT), and specific binding in whole cells and nuclei was measured. Maximum binding (Bmax) in the whole cell assay averaged 0.88 +/- 0.15 fmol . microgram DNA-1 (mean +/- SD) in the control group (controls A, 0.89 +/- 0.16 fmol . microgram DNA-1; controls B, 0.85 fmol . microgram DNA-1) and 0.7 +/- 0.25 fmol . microgram DNA-1 in the patients with hypospadias. In the latter group, Bmax in six patients was below the minimum values determined in the controls. Maximum specific nuclear binding in the control groups averaged 43% (range, 30-55%) of the corresponding intracellular binding. In contrast, nuclear binding in strains from patients with hypospadias was lower (range, 0-12% of whole cell Bmax). In particular, no high affinity saturable nuclear [3H]DHT binding could be measured in 6 of the 11 patients. We interpret these data to suggest that defective intracellular and/or nuclear binding might be the cause of defective genital development in some patients with severe hypospadias.
H U Schweikert, M Schlüter, G Romalo
These studies were designed to determine the role of platelet-activating factor (PAF) in the pathogenesis of immune complex (IgG) induced dermal vasculitis in the rat. In vitro, very low (pM and nM) concentrations of PAF "primed" rat neutrophils for enhanced O2-. responses to IgG immune complexes while higher concentrations were directly stimulatory. The PAF receptor antagonist, L-652,731, blocked responses (O2-. production and enzyme release) of rat neutrophils stimulated with PAF but did not block responses triggered by immune complexes, formyl chemotactic peptide or opsonized zymosan particles. When L-652,731 was added to the antibody employed in the reversed passive Arthus reaction, the injury resulting from immune complex-induced vasculitis was significantly attenuated. In order to determine if in vivo protection provided by L-652,731 was related to neutrophils, we developed a new model in which rats are systemically depleted of neutrophils by cyclophosphamide and then locally reconstituted with intact neutrophils in a manner that allows restoration of immune complex-induced vascular injury. With this model, we demonstrated that the effects of neutrophil reconstitution are substantially diminished if the cells are pretreated with L-652,731 and then washed. By priming neutrophils with substimulatory concentrations of PAF, we have also provided in vivo evidence that neutrophil priming can increase the magnitude of vascular injury. These data provide evidence that vascular injury associated with immune complex dermal vasculitis is related to availability of PAF receptors on neutrophils, suggesting a mechanism through which PAF may function as a mediator in the pathogenesis of immune complex vasculitis.
J S Warren, D M Mandel, K J Johnson, P A Ward
We employed a novel immunoradiometric assay to measure plasma levels of active renin and prorenin in physiologic and pharmacologic studies designed to characterize renin biosynthesis and processing in response to both chronic and acute stimuli of renin secretion in normal human subjects. Stimulation of renin secretion with prolonged dietary sodium restriction or amiloride resulted in marked increases in the plasma levels of prorenin, active renin, and plasma renin activity (PRA); suppression of renin secretion with indomethacin resulted in parallel decreases in prorenin, active renin, and PRA. In contrast, acute stimulation with upright activity or administration of an angiotensin-converting enzyme inhibitor, which increased active renin and PRA from 2- to 15-fold, had no effect on prorenin levels. Based on studies in cultured human juxtaglomerular tumor cells, it has been proposed that prorenin is secreted constitutively whereas active renin is stored in and released from secretory granules through a regulated pathway. Our studies are consistent with such a model: the parallel changes in active renin and prorenin with experimental maneuvers of long duration suggest that both the constitutive and regulated pathways are altered under these conditions. The increase in active renin levels in the absence of a change in prorenin that occurs in response to acute stimuli presumably represents the release of preformed active enzyme that is stored in secretory granules.
E B Toffelmire, K Slater, P Corvol, J Menard, M Schambelan
The major P-450IIIA gene family member present in human liver is HLp which, like its rat liver orthologue P-450p, is inducible by glucocorticoids and catalyzes erythromycin N-demethylation. To develop a practical method to estimate the amounts of HLp in patients [14C]N-methyl erythromycin was injected into rats that had been pretreated with dexamethasone or with inducers of other forms of cytochrome P-450. The rate of demethylation of this substrate, measured simply as 14CO2 in the breath, correlated well with the concentrations of immunoreactive P-450p protein (r = 0.70), holocytochrome P-450p (r = 0.70), or with erythromycin N-demethylase activity (r = 0.90) determined in the liver microsomes prepared from each rat. Next, [14C]N-methyl erythromycin was administered to 30 patients and there was a sixfold interindividual variation in breath 14CO2 production seemingly unrelated to medications, smoking status or age. However, the average breath test values were twofold greater in female as compared to male patients (P less than 0.01). Breath 14CO2 production rose in patients retested after treatment with the P-450IIIA inducers dexamethasone (P less than 0.05) or rifampicin (P less than 0.05) and was decreased after treatment with the HLp inhibitor triacetyloleandomycin (P less than 0.05). We conclude that the erythromycin breath test provides a convenient assay of P-450IIIA cytochromes in rats and in some patients.
P B Watkins, S A Murray, L G Winkelman, D M Heuman, S A Wrighton, P S Guzelian
C1-inhibitor (C1-Inh) is an important inhibitor of the inflammatory response and deficiency of this inhibitor, which may be hereditary or acquired, is associated with recurrent episodes of edema. Recently, an autoimmune form of angioedema has been described that is associated with functional deficiency of C1-Inh and an autoantibody that impedes C1-Inh function. In this report we describe the isolation of C1-Inh from the monocytes and plasma of a patient with autoimmune angioedema and demonstrate that the patient's monocytes secrete structurally and functionally normal C1-Inh, but show that this protein circulates in the patient's plasma in an inactive, structurally altered form. Furthermore, using analytic gel electrophoresis techniques it is demonstrated that the patient's autoantibody facilitates cleavage of normal C1-Inh, by its target proteases, to the same species of C1-Inh that is found circulating in the patient's plasma. This autoantibody facilitated cleavage of normal C1-Inh is apparently a consequence of destabilization of protease/inhibitor complexes. These findings contribute to our understanding of protease/C1-Inh interactions and document important observations on pathogenic mechanisms in autoimmune disease.
J Jackson, R B Sim, K Whaley, C Feighery
A recently described peptide hormone, endothelin, is a potent vasoconstrictor, but it is unclear whether endothelin has other biological actions. These experiments extend the range of biological actions of endothelin to stimulation of mitogenesis. Endothelin at low concentrations (0.1-10 nM) induced mitogenesis by quiescent rat glomerular mesangial cells in culture. Mitogenesis induced by endothelin was accompanied by activation of phospholipase C with increased inositol phosphate turnover and increments of intracellular [Ca2+]. Endothelin also activated Na+/H+ exchange, causing cytosolic alkalinization, and enhanced transcription of the c-fos protooncogene, additional biochemical signals closely linked to proliferation. In addition to being a vasoconstrictor, endothelin thus also functions as a mitogen, presumably through activation of phospholipase C.
M S Simonson, S Wann, P Mené, G R Dubyak, M Kester, Y Nakazato, J R Sedor, M J Dunn
We have previously reported that the amino acid sequence of the common acute lymphoblastic leukemia antigen (CALLA, CD10) translated from a normal human kidney cDNA clone is identical to that of neutral endopeptidase (NEP, EC 3.4.24.11). In this study, we show that by flow cytometry, a monoclonal antibody (135A3) produced against rabbit NEP reacted selectively with leukemia and melanoma cell lines expressing CALLA on their surface. A glycoprotein of apparent Mr 100,000 was immunoprecipitated from surface labeled NALM-1 leukemia or Mel-1477 melanoma cells with monoclonal antibodies to NEP (135A3) or CALLA (44C10). mRNAs hybridizing to a NEP-specific probe were present in CALLA+ leukemia and melanoma cell lines, but absent from CALLA- lines. NEP enzymatic activity was detected on intact cells from CALLA+ lines, but not CALLA- lines. The activity was blocked by two selective inhibitors of NEP, thiorphan and phosphoramidon. CALLA antigen purified from the NALM-6 leukemic cell line by affinity to 44C10-IgG Sepharose retained a peptidase activity that was completely blocked by thiorphan and phosphoramidon. Thus the CALLA antigen present at the surface of leukemia and melanoma cell lines is an enzymatically active neutral endopeptidase.
C V Jongeneel, E J Quackenbush, P Ronco, P Verroust, S Carrel, M Letarte
Although IL-1 stimulates cellular responses in both lymphoid and nonlymphoid cells, the second messengers by which IL-1 activates cells are unknown. Recombinant IL-1 alpha (rIL-1) is a comitogen for glomerular mesangial cells. Using this model we explored potential transmembrane signals by which IL-1 stimulates cellular responses. Certain mitogens hydrolyze inositol phospholipids by phospholipase C to generate 1,2-diacylglycerol, a cofactor for protein kinase C, and inositol (1,4,5)-trisphosphate, which mobilizes intracellular calcium. rIL-1 induced a peak increase in [3H]1,2-diacylglycerol formation at 1 min. Production of 1,2-diacylglycerol often parallels the generation of phosphatidic acid; however, rIL-1 stimulated [32P]phosphatidate formation only after 60 min. rIL-1 did not change the inositol phosphate or cytosolic free calcium concentrations, demonstrating that rIL-1 does not activate an inositol phospholipid-specific phospholipase C. [3H]Phosphorylethanolamine, but not [3H]phosphorylserine or [3H]phosphorylcholine, was maximally elevated at 1 min in mesangial cells incubated with rIL-1. Radioactivity incorporated into phosphatidylethanolamine but not phosphatidylcholine was also decreased in IL-1-stimulated mesangial cells compared with control at 1 min. These data suggest that rIL-1 activates a phospholipase C predominantly linked to phosphatidylethanolamine. In contrast to other mitogens, rIL-1 did not alter intracellular pH. Both 12-0-tetradecanoyl-phorbol-13-acetate, a homologue of 1,2-diacylglycerol, and phosphatidate but not phosphatidylcholine in the presence of 0.5% fetal bovine serum stimulated mesangial cell proliferation. rIL-1-induced cellular activation may be mediated, at least in part, by phospholipid-derived second messengers generated through novel pathways.
M Kester, M S Simonson, P Mené, J R Sedor
Although epithelia, which often are in intimate contact with lymphoid cells, may bear receptors for various cytokines, it is unclear whether cytokines directly effect epithelial function. We examine the effects of the cytokine interferon (IFN) on barrier function of cultured monolayers of the T84 human intestinal epithelial cell line. Gamma IFN, in concentrations and exposures required to show its other biological effects, directly affects such monolayers. Monolayer resistance is substantially diminished by gamma IFN. Such effects were not due to cytotoxicity as judged morphologically and by LDH assays. Solute fluxes and dual Na+-mannitol flux analysis indicate that the resistance decrease is due to an effect of gamma IFN on tight junction permeability. The effects of gamma IFN on monolayer barrier function were not duplicated by the cytokines interleukin 1, interleukin 2, or tumor necrosis factor. We speculate that such products of activation of lymphoid cells might influence barrier function of intestinal, and perhaps other epithelia in disease states.
J L Madara, J Stafford
Cryopreservation of polymorphonuclear leukocytes (PMN) has largely failed, probably because of their rich content of granular (lysosomal) enzymes. We have been developing granule-poor cytoplasts (anucleate fragments) from PMN which retain motile functions of the parent cell. The two types studied here were induced either by brief heating on surfaces (cytokineplasts) or by discontinuous gradient centrifugation (Ficoll) without heat or drugs (U-cytoplasts). Freshly made, these cytoplasts respond chemotactically to formyl peptide (fMet-Leu-Phe), and they take up and kill roughly half as many Staphylococcus aureus as their (larger, granular) parent PMN. Unlike their parent cells, after cryopreservation both cytoplasts remain chemotactic, and in matched experiments they take up and kill staphylococci with undiminished avidity. These findings are the first indications that PMN cytoplasts suitable for clinical use may be feasible.
S E Malawista, G Van Blaricom, M G Breitenstein
Using Northern blotting with a human genomic DNA probe for the pro-opiomelanocortin (POMC) gene, we have shown specific mRNA in normal human peripheral mononuclear cells (PBMC); the presence of specific mRNA was also observed in a T lymphocyte cell line derived from a patient with lymphoma. We then demonstrated that PBMC translate the message into protein. Thus, using a radioimmunoassay with an antibody for ACTH, a median of 29 pg of ACTH-like immunoreactivity (ACTH-LIR) was found in 10(7) PBMC. ACTH-LIR was also detected in seven different cell lines derived from patients with lymphoid and myeloid malignancies, two of them JM and U937 showing the highest values 135 and 108 pg/10(7) cells, respectively. The chromatographic characterization of this ACTH-LIR showed, at least, three molecular forms of immunoreactive ACTH with molecular weights of the order of 31,000 POMC, 22,000 ACTH, and 4,500 ACTH, in addition to high-molecular-weight material (greater than 43,000). We conclude that PBMC produce ACTH-LIR which may act as a paracrine immunomodulator in a similar way to lymphokines and/or may signal the adrenal gland to secrete glucocorticoids.
R Buzzetti, L McLoughlin, P M Lavender, A J Clark, L H Rees