Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113916

Osteoclast-like cells form in long-term human bone marrow but not in peripheral blood cultures.

N Takahashi, T Kukita, B R MacDonald, A Bird, G R Mundy, L M McManus, M Miller, A Boyde, S J Jones, and G D Roodman

Veterans Administration Hospital, San Antonio, Texas.

Find articles by Takahashi, N. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by Kukita, T. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by MacDonald, B. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by Bird, A. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by Mundy, G. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by McManus, L. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by Miller, M. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by Boyde, A. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by Jones, S. in: PubMed | Google Scholar

Veterans Administration Hospital, San Antonio, Texas.

Find articles by Roodman, G. in: PubMed | Google Scholar

Published February 1, 1989 - More info

Published in Volume 83, Issue 2 on February 1, 1989
J Clin Invest. 1989;83(2):543–550. https://doi.org/10.1172/JCI113916.
© 1989 The American Society for Clinical Investigation
Published February 1, 1989 - Version history
View PDF
Abstract

Transplantation studies have suggested that peripheral blood mononuclear cells contain precursors for osteoclasts. Thus we tested the capacity of peripheral blood monocytes to form osteoclasts in long-term culture. We have reported previously that mononuclear cells from feline, baboon, and human marrow form osteoclast-like cells in long term cultures. Further, the formation of these cells is increased in response to bone resorption stimulatory agents such as PTH, interleukin 1, and transforming growth factor alpha. We now report that these cells show characteristic cytoplasmic contraction with calcitonin and form resorption lacunae when cultured on sperm whale dentine. Thus, these bone marrow-derived multinucleated cells fulfill the functional criteria for osteoclasts. Although cultured peripheral blood monocytes can be induced to form multinucleated cells with 1,25-dihydroxyvitamin D3, these cells did not show similar responses to the osteotropic factors as multinucleated cells formed in the bone marrow cultures multinucleated cells. These results indicate that osteoclasts or cells closely related to osteoclasts form in long-term human bone marrow cultures. In contrast, few mononuclear cells in the peripheral blood appear capable of forming osteoclasts under the culture conditions used in these experiments.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 543
page 543
icon of scanned page 544
page 544
icon of scanned page 545
page 545
icon of scanned page 546
page 546
icon of scanned page 547
page 547
icon of scanned page 548
page 548
icon of scanned page 549
page 549
icon of scanned page 550
page 550
Version history
  • Version 1 (February 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts