Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Intracellular pH during "chemical hypoxia" in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death.
G J Gores, … , B Herman, J J Lemasters
G J Gores, … , B Herman, J J Lemasters
Published February 1, 1989
Citation Information: J Clin Invest. 1989;83(2):386-396. https://doi.org/10.1172/JCI113896.
View: Text | PDF
Research Article

Intracellular pH during "chemical hypoxia" in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death.

  • Text
  • PDF
Abstract

The relationships between extracellular pH (pHo), intracellular pH (pHi), and loss of cell viability were evaluated in cultured rat hepatocytes after ATP depletion by metabolic inhibition with KCN and iodoacetate (chemical hypoxia). pHi was measured in single cells by ratio imaging of 2',7'-biscarboxy-ethyl-5,6-carboxyfluorescein (BCECF) fluorescence using multiparameter digitized video microscopy. During chemical hypoxia at pHo of 7.4, pHi decreased from 7.36 to 6.33 within 10 min. pHi remained at 6.1-6.5 for 30-40 min (plateau phase). Thereafter, pHi began to rise and cell death ensued within minutes, as evidenced by nuclear staining with propidium iodide and coincident leakage of BCECF from the cytoplasm. An acidic pHo produced a slightly greater drop in pHi, prolonged the plateau phase of intracellular acidosis, and delayed the onset of cell death. Inhibition of Na+/H+ exchange also prolonged the plateau phase and delayed cell death. In contrast, monensin or substitution of gluconate for Cl- in buffer containing HCO3- abolished the pH gradient across the plasma membrane and shortened cell survival. The results indicate that intracellular acidosis after ATP depletion delays the onset of cell death, whereas reduction of the degree of acidosis accelerates cell killing. We conclude that intracellular acidosis protects against hepatocellular death from ATP depletion, a phenomenon that may represent a protective adaptation against hypoxic and ischemic stress.

Authors

G J Gores, A L Nieminen, B E Wray, B Herman, J J Lemasters

×

Full Text PDF

Download PDF (3.28 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts