Dr. Christine Seidman of the Harvard Medical School has uncovered the genetic basis of many human cardiovascular disorders, from cardiomyopathy and heart failure to congenital heart malformations. In this interview, she speaks about her early intrigue with atrial natriuretic factor and her more current gene-intensive investigations. She also shares many more stories about her interest in the ear, an early inspirational patient, and her thoughts on work-life balance.
Tsonwin Hai and colleagues discuss how the transcription factor ATF3 acts as a key regulator of the host immune response and as a contributor to co-option of the host by cancer cells to promote metastasis. Highlights:
Professor Stephen O’Rahilly’s research has led to an increased understanding of the genetic causes of human obesity and insulin resistance. Using modern biochemical approaches and classical clinical observation in humans with profound metabolic disorders, O’Rahilly, from the Departments of Medicine and Clinical Biochemistry at the University of Cambridge, has shown that a person’s appetite and feeding behavior can be linked to specific genes. His work has challenged long-held dogmas and led to new treatment avenues. The full interview includes many more stories about how you can learn more from reading Chekhov than medical school and why he has stayed in Cambridge all these years.
More than almost any other scientist in the field of obesity and metabolism research, the work of Bruce Spiegelman, from the Dana-Farber Cancer Institute and Harvard Medical School, has informed potential targets for drug discovery that could burn fat and even turn fat into muscle. He was the first to suggest that inflammation underscores insulin resistance, and also the first to find the key regulator of adipogenesis, PPAR-γ.
Brett Monia and Stefano Rivella discuss how reduction of TMPRSS6 expression with antisense oligonucleotides ameliorates iron metabolism disorders in mice. Highlights: