Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Conversations with Giants in Medicine

Thomas Südhof

The simple fact that you can understand the words on this page, and that you might remember any of this interview tomorrow, is thanks to the simultaneous and precise coordination of communication between the billions of neurons in your brain and peripheral nervous system. Herein, the JCI speaks with Thomas Südhof of Stanford University, who has been at the center of unlocking the secrets of neurotransmission. His work over the last 30 years has elucidated much of what we know about the molecular mechanisms of neurotransmission in synaptic signaling. For this body of work, Südhof has recently shared in the 2013 Nobel Prize in Physiology or Medicine and the 2013 Albert Lasker Basic Medical Research Award.


John T. Potts Jr.

Much of our current understanding of calcium metabolism rests in large part on a series of discoveries made by John T. Potts Jr. of the Massachusetts General Hospital. Potts is an internationally recognized authority on calcium metabolism and parathyroid hormone (PTH) in particular. In addition to his research, he carried an enormous leadership role, serving as both Chairman of Medicine and Physician in Chief of the MGH between 1981 and 1996. Watch the full interview for stories about working with Berson and Yalow, his approach to leading the MGH, and what has changed over his 56 years there.


Aaron Ciechanover

For decades, the attention of the scientific community was focused on the central dogma of biology — the decoding of the genetic information embedded in DNA. Little research was dedicated to how proteins are degraded and removed from cells. Enter onto the scene a young graduate student, Aaron Ciechanover, who with his mentor Avram Hershko, uncovered the complex and elegant ubiquitin proteolytic system. For his discovery, Dr. Ciechanover shared in the 2004 Nobel Prize in Chemistry with Hershko and Irwin Rose. Watch the complete interview for more stories about being a member of the Pontifical Academy of Sciences, the magic of “A-ha” moments, and the conflict between religion and Darwinism.


Bruce Beutler

A legend within the field of innate immunity, Dr. Bruce Beutler of the University of Texas Southwestern Medical School is best known for two seminal discoveries: identifying mouse tumor necrosis factor and discovering Toll-like receptor 4, the receptor for lipopolysaccharide. With this discovery, later rewarded with the 2011 Nobel Prize in Physiology or Medicine, we finally understood how immune cells could recognize and react to bacteria. Watch the full interview for many more stories on developing etanercept, searching landfills for sequencers, and falling in love with genetics.


John Oates

Dr. John Oates of Vanderbilt University was central in launching the field of clinical pharmacology and gave life to the concepts of first-pass drug metabolism and interindividual variation in the way humans process drugs. Dr. Oates also made seminal discoveries on the metabolism, biosynthesis, and pharmacology of eicosanoids. Watch the full interview for many more stories about testifying before Congress and Dr. Oates' love of sailing.

  • ← Previous
  • 1
  • 2
  • …
  • 12
  • 13
  • 14
  • 15
  • 16
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts