Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Brief Report

  • 166 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • Next →
CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients
Barbara Savoldo, … , Malcolm K. Brenner, Gianpietro Dotti
Barbara Savoldo, … , Malcolm K. Brenner, Gianpietro Dotti
Published April 11, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI46110.
View: Text | PDF
Article has an altmetric score of 28

CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients

  • Text
  • PDF
Abstract

Targeted T cell immunotherapies using engineered T lymphocytes expressing tumor-directed chimeric antigen receptors (CARs) are designed to benefit patients with cancer. Although incorporation of costimulatory endodomains within these CARs increases the proliferation of CAR-redirected T lymphocytes, it has proven difficult to draw definitive conclusions about the specific effects of costimulatory endodomains on the expansion, persistence, and antitumor effectiveness of CAR-redirected T cells in human subjects, owing to the lack of side-by-side comparisons with T cells bearing only a single signaling domain. We therefore designed a study that allowed us to directly measure the consequences of adding a costimulatory endodomain to CAR-redirected T cells. Patients with B cell lymphomas were simultaneously infused with 2 autologous T cell products expressing CARs with the same specificity for the CD19 antigen, present on most B cell malignancies. One CAR encoded both the costimulatory CD28 and the ζ-endodomains, while the other encoded only the ζ-endodomain. CAR+ T cells containing the CD28 endodomain showed strikingly enhanced expansion and persistence compared with CAR+ T cells lacking this endodomain. These results demonstrate the superiority of CARs with dual signal domains and confirm a method of comparing CAR-modified T cells within individual patients, thereby avoiding patient-to-patient variability and accelerating the development of optimal T cell immunotherapies.

Authors

Barbara Savoldo, Carlos Almeida Ramos, Enli Liu, Martha P. Mims, Michael J. Keating, George Carrum, Rammurti T. Kamble, Catherine M. Bollard, Adrian P. Gee, Zhuyong Mei, Hao Liu, Bambi Grilley, Cliona M. Rooney, Helen E. Heslop, Malcolm K. Brenner, Gianpietro Dotti

×

TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice
Abigail F. Welford, … , Gillian M. Tozer, Claire E. Lewis
Abigail F. Welford, … , Gillian M. Tozer, Claire E. Lewis
Published April 1, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI44562.
View: Text | PDF
Article has an altmetric score of 18

TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice

  • Text
  • PDF
Abstract

Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA4P-treated tumors either by interfering pharmacologically with the CXCL12/CXCR4 axis or by genetically depleting TEMs in tumor-bearing mice markedly increased the efficacy of CA4P treatment. These data suggest that TEMs limit VDA-induced tumor injury and represent a potential target for improving the clinical efficacy of VDA-based therapies.

Authors

Abigail F. Welford, Daniela Biziato, Seth B. Coffelt, Silvia Nucera, Matthew Fisher, Ferdinando Pucci, Clelia Di Serio, Luigi Naldini, Michele De Palma, Gillian M. Tozer, Claire E. Lewis

×

Genes methylated by DNA methyltransferase 3b are similar in mouse intestine and human colon cancer
Eveline J. Steine, … , Rudolf Jaenisch, Heinz G. Linhart
Eveline J. Steine, … , Rudolf Jaenisch, Heinz G. Linhart
Published April 1, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI43169.
View: Text | PDF
Article has an altmetric score of 3

Genes methylated by DNA methyltransferase 3b are similar in mouse intestine and human colon cancer

  • Text
  • PDF
Abstract

Human cancer cells frequently have regions of their DNA hypermethylated, which results in transcriptional silencing of affected genes and promotion of tumor formation. However, it is still unknown whether cancer-associated aberrant DNA methylation is targeted to specific genomic regions, whether this methylation also occurs in noncancerous cells, and whether these epigenetic events are maintained in the absence of the initiating cause. Here we have addressed some of these issues by demonstrating that transgenic expression of DNA methyltransferase 3b (Dnmt3b) in the mouse colon initiates de novo DNA methylation of genes that are similar to genes that become methylated in human colon cancer. This is consistent with the notion that aberrant methylation in cancer may be attributable to targeting of specific sequences by Dnmt3b rather than to random methylation followed by clonal selection. We also showed that Dnmt3b-induced aberrant DNA methylation was maintained in regenerating tissue, even in the absence of continuous Dnmt3b expression. This supports the concept that transient stressors can cause permanent epigenetic changes in somatic stem cells and that these accumulate over the lifetime of an organism in analogy to DNA mutations.

Authors

Eveline J. Steine, Mathias Ehrich, George W. Bell, Arjun Raj, Seshamma Reddy, Alexander van Oudenaarden, Rudolf Jaenisch, Heinz G. Linhart

×

An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice
Jan Gronych, … , Stefan Pfister, Peter Lichter
Jan Gronych, … , Stefan Pfister, Peter Lichter
Published March 14, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI44656.
View: Text | PDF
Article has an altmetric score of 6

An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice

  • Text
  • PDF
Abstract

Pilocytic astrocytoma (PA) is the most common type of primary brain tumor in children and the second most frequent cancer in childhood. Children with incompletely resected PA represent a clinically challenging patient cohort for whom conventional adjuvant therapies are only moderately effective. This has produced high clinical demand for testing of new molecularly targeted treatments. However, the development of new therapeutics for PA has been hampered by the lack of an adequate in vivo tumor model. Recent studies have identified activation of MAPK signaling, mainly by oncogenic BRAF activation, as a hallmark genetic event in the pathogenesis of human PA. Using in vivo retroviral somatic gene transfer into mouse neural progenitor cells, we have shown here that ectopic expression of the activated BRAF kinase domain is sufficient to induce PA in mice. Further in vitro analyses demonstrated that overexpression of activated BRAF led to increased proliferation of primary mouse astrocytes that could be inhibited by treatment with the kinase inhibitor sorafenib. Our in vivo model for PA shows that the activated BRAF kinase domain is sufficient to induce PA and highlights its role as a potential therapeutic target.

Authors

Jan Gronych, Andrey Korshunov, Josephine Bageritz, Till Milde, Manfred Jugold, Dolores Hambardzumyan, Marc Remke, Christian Hartmann, Hendrik Witt, David T.W. Jones, Olaf Witt, Sabine Heiland, Martin Bendszus, Eric C. Holland, Stefan Pfister, Peter Lichter

×

Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease
Yow-Sien Lin, … , Chih-Hung Wang, Yijuang Chern
Yow-Sien Lin, … , Chih-Hung Wang, Yijuang Chern
Published March 14, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI43220.
View: Text | PDF
Article has an altmetric score of 1

Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease

  • Text
  • PDF
Abstract

Huntington disease (HD) is a degenerative disorder caused by expanded CAG repeats in exon 1 of the huntingtin gene (HTT). Patients with late-stage HD are known to have abnormal auditory processing, but the peripheral auditory functions of HD patients have yet to be thoroughly assessed. In this study, 19 HD patients (aged 40–59 years) were assessed for hearing impairment using pure-tone audiometry and assessment of auditory brainstem responses (ABRs). PTA thresholds were markedly elevated in HD patients. Consistent with this, elevated ABR thresholds were also detected in two mouse models of HD. Hearing loss thus appears to be an authentic symptom of HD. Immunohistochemical analyses demonstrated the presence of mutant huntingtin that formed intranuclear inclusions in the organ of Corti of HD mice, which might interfere with normal auditory function. Quantitative RT-PCR and Western blot analyses further revealed reduced expression of brain creatine kinase (CKB), a major enzyme responsible for ATP regeneration via the phosphocreatine–creatine kinase (PCr-CK) system, in the cochlea of HD mice. Treatment with creatine supplements ameliorated the hearing impairment of HD mice, suggesting that the impaired PCr-CK system in the cochlea of HD mice may contribute to their hearing impairment. These data also suggest that creatine may be useful for treating the hearing abnormalities of patients with HD.

Authors

Yow-Sien Lin, Chiung-Mei Chen, Bing-wen Soong, Yih-Ru Wu, Hui-Mei Chen, Wen-Ying Yeh, Dai-Rong Wu, Yi-Jun Lin, Paul Wai-Fung Poon, Mei-Ling Cheng, Chih-Hung Wang, Yijuang Chern

×

CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions
Jung-Eun Jang, … , Steven L. Spitalnik, Paul S. Frenette
Jung-Eun Jang, … , Steven L. Spitalnik, Paul S. Frenette
Published March 7, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI45336.
View: Text | PDF
Article has an altmetric score of 3

CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions

  • Text
  • PDF
Abstract

Hemolytic transfusion reactions (HTRs) can produce serious and potentially life-threatening complications in sickle cell disease (SCD) patients; however, the mechanisms underlying these complications remain undetermined. We established a model of alloimmune, IgG-mediated HTRs in a well-characterized humanized murine model of SCD. HTRs induced acute vaso-occlusive crisis (VOC), resulting in shortened survival of SCD mice. Acute VOC was associated with elevated circulating inflammatory chemokine levels, including striking elevation of the levels of the neutrophil chemoattractant CXCL1. Recombinant CXCL1 administration was sufficient to induce acute VOC in SCD mice, characterized by leukocyte recruitment in venules, capture of circulating red blood cells, reduction of venular flow, and shortened survival. In contrast, blockade of the CXCL1 receptor, CXCR2, prevented HTR-elicited acute VOC and prolonged survival in SCD mice. These results indicate that CXCL1 is a key inflammatory mediator of acute VOC in SCD mice. Targeted inhibition of CXCL1 and/or CXCR2 may therefore represent a new therapeutic approach for acute VOC in SCD patients.

Authors

Jung-Eun Jang, Eldad A. Hod, Steven L. Spitalnik, Paul S. Frenette

×

Rapid, reversible activation of AgRP neurons drives feeding behavior in mice
Michael J. Krashes, … , Bryan L. Roth, Bradford B. Lowell
Michael J. Krashes, … , Bryan L. Roth, Bradford B. Lowell
Published March 1, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI46229.
View: Text | PDF
Article has an altmetric score of 94

Rapid, reversible activation of AgRP neurons drives feeding behavior in mice

  • Text
  • PDF
Abstract

Several different neuronal populations are involved in regulating energy homeostasis. Among these, agouti-related protein (AgRP) neurons are thought to promote feeding and weight gain; however, the evidence supporting this view is incomplete. Using designer receptors exclusively activated by designer drugs (DREADD) technology to provide specific and reversible regulation of neuronal activity in mice, we have demonstrated that acute activation of AgRP neurons rapidly and dramatically induces feeding, reduces energy expenditure, and ultimately increases fat stores. All these effects returned to baseline after stimulation was withdrawn. In contrast, inhibiting AgRP neuronal activity in hungry mice reduced food intake. Together, these findings demonstrate that AgRP neuron activity is both necessary and sufficient for feeding. Of interest, activating AgRP neurons potently increased motivation for feeding and also drove intense food-seeking behavior, demonstrating that AgRP neurons engage brain sites controlling multiple levels of feeding behavior. Due to its ease of use and suitability for both acute and chronic regulation, DREADD technology is ideally suited for investigating the neural circuits hypothesized to regulate energy balance.

Authors

Michael J. Krashes, Shuichi Koda, ChianPing Ye, Sarah C. Rogan, Andrew C. Adams, Daniel S. Cusher, Eleftheria Maratos-Flier, Bryan L. Roth, Bradford B. Lowell

×

Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells
Kazim H. Narsinh, … , Robert C. Robbins, Joseph C. Wu
Kazim H. Narsinh, … , Robert C. Robbins, Joseph C. Wu
Published February 7, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI44635.
View: Text | PDF
Article has an altmetric score of 13

Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells

  • Text
  • PDF
Abstract

Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are promising candidate cell sources for regenerative medicine. However, despite the common ability of hiPSCs and hESCs to differentiate into all 3 germ layers, their functional equivalence at the single cell level remains to be demonstrated. Moreover, single cell heterogeneity amongst stem cell populations may underlie important cell fate decisions. Here, we used single cell analysis to resolve the gene expression profiles of 362 hiPSCs and hESCs for an array of 42 genes that characterize the pluripotent and differentiated states. Comparison between single hESCs and single hiPSCs revealed markedly more heterogeneity in gene expression levels in the hiPSCs, suggesting that hiPSCs occupy an alternate, less stable pluripotent state. hiPSCs also displayed slower growth kinetics and impaired directed differentiation as compared with hESCs. Our results suggest that caution should be exercised before assuming that hiPSCs occupy a pluripotent state equivalent to that of hESCs, particularly when producing differentiated cells for regenerative medicine aims.

Authors

Kazim H. Narsinh, Ning Sun, Veronica Sanchez-Freire, Andrew S. Lee, Patricia Almeida, Shijun Hu, Taha Jan, Kitchener D. Wilson, Denise Leong, Jarrett Rosenberg, Mylene Yao, Robert C. Robbins, Joseph C. Wu

×

Gene therapy by allele selection in a mouse model of beta-thalassemia
Sigrid Eckardt, … , Michael Kyba, K. John McLaughlin
Sigrid Eckardt, … , Michael Kyba, K. John McLaughlin
Published January 10, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI45377.
View: Text | PDF

Gene therapy by allele selection in a mouse model of beta-thalassemia

  • Text
  • PDF
Abstract

To be of therapeutic use, autologous stem cells derived from patients with inherited genetic disorders require genetic modification via gene repair or insertion. Here, we present proof of principle that, for diseases associated with dominant alleles (gain-of-function or haploinsufficient loss-of-function), disease allele–free ES cells can be derived from afflicted individuals without genome manipulation. This approach capitalizes on the derivation of uniparental cells, such as parthenogenetic (PG) ES cell lines from disease allele–free gametes. Diploid mammalian uniparental embryos with only maternally (oocyte-) or paternally (sperm-)derived genomes fail early in development due to the nonequivalence of parental genomes caused by genomic imprinting. However, these uniparental embryos develop to the blastocyst stage, allowing the derivation of ES cell lines. Using a mouse model for dominant beta-thalassemia, we developed disease allele–free PG ES cell lines from the oocytes of affected animals. Phenotype correction was obtained in donor-genotype recipients after transplantation of in vitro hematopoietic ES cell derivatives. This genetic correction strategy without gene targeting is potentially applicable to any dominant disease. It could also be the sole approach for larger or more complex mutations that cannot be corrected by homologous recombination.

Authors

Sigrid Eckardt, N. Adrian Leu, Ashley Yanchik, Seigo Hatada, Michael Kyba, K. John McLaughlin

×

Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients
Jason L. Gaglia, … , Diane Mathis, Ralph Weissleder
Jason L. Gaglia, … , Diane Mathis, Ralph Weissleder
Published December 1, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI44339.
View: Text | PDF
Article has an altmetric score of 7

Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients

  • Text
  • PDF
Abstract

Type 1A diabetes (T1D) is an autoimmune disease characterized by leukocyte infiltration of the pancreatic islets of Langerhans. A major impediment to advances in understanding, preventing, and curing T1D has been the inability to “see” the disease initiate, progress, or regress, especially during the occult phase. Here, we report the development of a noninvasive method to visualize T1D at the target organ level in patients with active insulitis. Specifically, we visualized islet inflammation, manifest by microvascular changes and monocyte/macrophage recruitment and activation, using magnetic resonance imaging of magnetic nanoparticles (MNPs). As a proof of principle for this approach, imaging of infused ferumoxtran-10 nanoparticles permitted effective visualization of the pancreas and distinction of recent-onset diabetes patients from nondiabetic controls. The observation that MNPs accumulate in the pancreas of T1D patients opens the door to exploiting this noninvasive imaging method to follow T1D progression and monitoring the ability of immunomodulatory agents to clear insulitis.

Authors

Jason L. Gaglia, Alexander R. Guimaraes, Mukesh Harisinghani, Stuart E. Turvey, Richard Jackson, Christophe Benoist, Diane Mathis, Ralph Weissleder

×
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Referenced in 229 patents
Referenced in 1 Wikipedia pages
747 readers on Mendeley
See more details
On 1 Facebook pages
47 readers on Mendeley
See more details
Referenced in 1 patents
79 readers on Mendeley
See more details
Blogged by 1
Referenced in 4 patents
Referenced in 1 Wikipedia pages
119 readers on Mendeley
See more details
Picked up by 8 news outlets
Blogged by 3
Posted by 3 X users
Referenced in 5 patents
Referenced in 1 Wikipedia pages
Highlighted by 1 platforms
1134 readers on Mendeley
See more details
Picked up by 1 news outlets
Posted by 1 X users
Referenced in 1 patents
On 1 Facebook pages
414 readers on Mendeley
2 readers on CiteULike
See more details
Referenced in 1 patents
40 readers on Mendeley
See more details
Referenced in 3 patents
Highlighted by 1 platforms
155 readers on Mendeley
See more details
Blogged by 1
77 readers on Mendeley
See more details