Cardiac myxomas are benign mesenchymal tumors that can present as components of the human autosomal dominant disorder Carney complex. Syndromic cardiac myxomas are associated with spotty pigmentation of the skin and endocrinopathy. Our linkage analysis mapped a Carney complex gene defect to chromosome 17q24. We now demonstrate that the PRKAR1α gene encoding the R1α regulatory subunit of cAMP-dependent protein kinase A (PKA) maps to this chromosome 17q24 locus. Furthermore, we show that PRKAR1α frameshift mutations in three unrelated families result in haploinsufficiency of R1α and cause Carney complex. We did not detect any truncated R1α protein encoded by mutant PRKAR1α. Although cardiac tumorigenesis may require a second somatic mutation, DNA and protein analyses of an atrial myxoma resected from a Carney complex patient with a PRKAR1α deletion revealed that the myxoma cells retain both the wild-type and the mutant PRKAR1α alleles and that wild-type R1α protein is stably expressed. However, in this atrial myxoma, we did observe a reversal of the ratio of R1α to R2β regulatory subunit protein, which may contribute to tumorigenesis. Further investigation will elucidate the cell-specific effects of PRKAR1α haploinsufficiency on PKA activity and the role of PKA in cardiac growth and differentiation.
Mairead Casey, Carl J. Vaughan, Jie He, Cathy J. Hatcher, Jordan M. Winter, Stanislawa Weremowicz, Kate Montgomery, Raju Kucherlapati, Cynthia C. Morton, Craig T. Basson
The pathophysiological roles of the angiotensin II type 2 receptor (AT2) in cardiac hypertrophy remain unclear. By the targeted deletion of mouse AT2 we were able to prevent the left ventricular hypertrophy resulting from pressure overload, while cardiac contractile functions remained normal. This implies that AT2 is a mediator of cardiac hypertrophy in response to increased blood pressure. The effects of AT2 deletion were independent of activation of embryonic genes for cardiac hypertrophy. However, p70S6k, one of the key factors in cardiac hypertrophy, was markedly and specifically reduced in the ventricles of Agtr2–/Y mice. We propose that p70S6k plays a major role in AT2-mediated ventricular hypertrophy.
Takaaki Senbonmatsu, Sahoko Ichihara, Edward Price Jr., F. Andrew Gaffney, Tadashi Inagami
We have recently shown that a single injection of mature, antigen-pulsed, human dendritic cells (DCs) rapidly elicits CD4+ and CD8+ T-cell immunity in vivo. The DCs were pulsed with 2 foreign proteins, keyhole limpet hemocyanin (KLH) and tetanus toxoid (TT), as well as an HLA A2.1-restricted influenza matrix peptide (MP). Responses to all 3 antigens peaked at 30–90 days after immunization and declined thereafter. To determine if the foreign helper proteins (TT and KLH) were essential for CD8+ T-cell responses to the viral peptide, we reinjected 3 of the HLA-2.1 subjects with mature DCs pulsed with MP alone. All 3 volunteers showed a rapid boost in MP-specific immunity, and freshly sampled blood from 1 contained cytolytic T cells. In all 3 subjects, CD8+ T-cell responses to booster DCs were faster and of greater magnitude than the responses to the first DC injection. Importantly, the T cells that proliferated after booster DC treatment secreted interferon-γ upon challenge with much lower doses of viral peptide than those elicited after the first injection, indicating a higher functional avidity for the ligand. These data begin to outline the kinetics of T-cell immunity in response to DCs and demonstrate that booster injections of mature DCs enhance both qualitative and quantitative aspects of CD8+ T-cell function in humans.
Madhav V. Dhodapkar, Joseph Krasovsky, Ralph M. Steinman, Nina Bhardwaj
HIV-1 disease is associated with pathological effects on T-cell production, destruction, and distribution. Using the deuterated (2H) glucose method for endogenous labeling, we have analyzed host factors that influence T-cell turnover in HIV-1–uninfected and –infected humans. In untreated HIV-1 disease, the average half life of circulating T cells was diminished without compensatory increases in cell production. Within 12 weeks of the initiation of highly active antiretroviral therapy (HAART), the absolute production rates of circulating T cells increased, and normal half-lives and production rates were restored by 12–36 months. Interpatient heterogeneity in the absolute degree of turnover correlated with the relative proportion of naive- and memory/effector-phenotype T cells in each of the CD4+ and CD8+ populations. The half-lives of naive-phenotype T cells ranged from 116–365 days (fractional replacement rates of 0.19–0.60% per day), whereas memory/effector-phenotype T cells persisted with half-lives from 22–79 days (fractional replacement rates of 0.87–3.14% per day). Naive-phenotype T cells were more abundant, and the half-life of total T cells was prolonged in individuals with abundant thymic tissue, as assessed by computed tomography. Such interpatient variation in T-cell kinetics may be reflective of differences in functional immune reconstitution after treatment for HIV-1 disease.
Joseph M. McCune, Mary Beth Hanley, Denise Cesar, Robert Halvorsen, Rebecca Hoh, Diane Schmidt, Eric Wieder, Steven Deeks, Scott Siler, Richard Neese, Marc Hellerstein
Antigen-specific T helper cells present in peripheral blood at very low frequencies are capable of rapid clonal expansion during antigenic challenge. The exquisite specificity of this response provides for activation and expansion of a very select cohort of T cells, a feature we have used to directly identify and quantify human epitope-specific T helper cells from peripheral blood. Soluble tetramerized class II MHC molecules, loaded with an immunodominant peptide from hemagglutinin (HA) and labeled with fluorescent dyes, were constructed and used to directly identify antigen-specific T cells from influenza-immune individuals. After 7 days of proliferation in response to stimulation by HA peptide or whole influenza vaccine, cells staining positive with the HA tetramer had undergone between 6 and 9 divisions and were CD3+, CD4+, CD25+, and CD8–, characteristic of activated T helper cells responding to antigen. The HA epitope-specific component of the complex response to whole influenza vaccine represented a major subset of proliferating T helper cells. Soluble class II tetramers allow a direct approach for the analysis of immunodominant antigenic specificities. The identification of antigen-specific T helper cells in the peripheral blood provides a means for tracking the immune response against infectious agents and in autoimmune disease.
Erik J. Novak, Andrew W. Liu, Gerald T. Nepom, William W. Kwok
Insulin receptor substrate–1 (IRS-1) is pivotal in mediating the actions of insulin and growth factors in most tissues of the body, but its role in insulin-producing β islet cells is unclear. Freshly isolated islets from IRS-1 knockout mice and SV40-transformed IRS-1–deficient β-cell lines exhibit marked insulin secretory defects in response to glucose and arginine. Furthermore, insulin expression is reduced by about 2-fold in the IRS-1–null islets and β-cell lines, and this defect can be partially restored by transfecting the cells with IRS-1. These data provide evidence for an important role of IRS-1 in islet function and provide a novel functional link between the insulin signaling and insulin secretion pathways.
Rohit N. Kulkarni, Jonathon N. Winnay, Molly Daniels, Jens C. Brüning, Sarah N. Flier, Douglas Hanahan, C. Ronald Kahn
Infection with Helicobacter pylori (Hp) induces the formation of lymphoid tissue in the stomach and the occasional development of primary gastric B-cell lymphomas. We have studied the expression of 2 chemokines that attract B lymphocytes, BCA-1 and SLC, in gastric tissue samples obtained from patients with chronic gastritis induced by Hp infection or nonsteroidal anti-inflammatory drugs, as well as from patients with Hp-associated low-grade and high-grade gastric lymphomas. High-level expression of BCA-1 and its receptor, CXCR5, was observed in all mucosal lymphoid aggregates and in the mantle zone of all secondary lymphoid follicles in Hp-induced gastric mucosa-associated lymphoid tissue (MALT). Follicular dendritic cells and B lymphocytes are possible sources of BCA-1, which is not expressed by T lymphocytes, macrophages, or CD1a+ dendritic cells. Strong expression of BCA-1 and CXCR5 was also detected in the transformed B cells of gastric MALT lymphomas. By contrast, SLC was confined almost exclusively to endothelial cells in and outside the lymphoid tissue. Only scant, occasional SLC expression was observed in the marginal zone of MALT follicles. Our findings indicate that BCA-1, which functions as a homing chemokine in normal lymphoid tissue, is induced in chronic Hp gastritis and is involved in the formation of lymphoid follicles and gastric lymphomas of the MALT type.
Luca Mazzucchelli, Andrea Blaser, Andreas Kappeler, Patrik Schärli, Jean A. Laissue, Marco Baggiolini, Mariagrazia Uguccioni
The transcription factor insulin promoter factor-1 (IPF-1) plays a central role in both the development of the pancreas and the regulation of insulin gene expression in the mature pancreatic β cell. A dominant-negative frameshift mutation in the IPF-l gene was identified in a single family and shown to cause pancreatic agenesis when homozygous and maturity-onset diabetes of the young (MODY) when heterozygous. We studied the role of IPF-1 in Caucasian diabetic and nondiabetic subjects from the United Kingdom. Three novel IPF-1 missense mutations (C18R, D76N, and R197H) were identified in patients with type 2 diabetes. Functional analyses of these mutations demonstrated decreased binding activity to the human insulin gene promoter and reduced activation of the insulin gene in response to hyperglycemia in the human β-cell line Nes2y. These mutations are present in 1% of the population and predisposed the subject to type 2 diabetes with a relative risk of 3.0. They were not highly penetrant MODY mutations, as there were nondiabetic mutation carriers 25–53 years of age. We conclude that mutations in the IPF-1 gene may predispose to type 2 diabetes and are a rare cause of MODY and pancreatic agenesis, with the phenotype depending upon the severity of the mutation.
Wendy M. Macfarlane, Timothy M. Frayling, Sian Ellard, Julie C. Evans, Lisa I.S. Allen, Michael P. Bulman, Susan Ayres, Maggie Shepherd, Penny Clark, Ann Millward, Andrew Demaine, Terence Wilkin, Kevin Docherty, Andrew T. Hattersley
Type 2 diabetes mellitus is a common disabling disease with onset in middle-aged individuals, caused by an imbalance between insulin production and action. Genetic studies point to major genetic components, but, with the exception of maturity-onset diabetes of the young (MODY), specific diabetes susceptibility genes remain to be identified. Recent studies showed that a dominant negative mutation in the insulin promoter factor-1 (IPF-1), a pancreatic β-cell specific transcription factor, causes pancreatic agenesis and MODY. Thus, we investigated 192 French, non-MODY type 2 diabetic families for mutations in IPF-1. We identified 3 novel IPF-1 mutations, including 2 substitutions (Q59L and D76N) and an in-frame proline insertion (InsCCG243). Functional transactivation assays of these IPF-1 mutant isoforms in a β-pancreatic tumor cell line transfected with a transcriptional reporter and IPF-1 expression plasmids demonstrate a significant inhibition of basal insulin promoter activity (stronger with the InsCCG243 mutant). We find that the InsCCG243 mutation is linked, in 2 families, to an autosomal dominant-like late-onset form of type 2 diabetes, in which insulin secretion becomes progressively impaired. The lower penetrance D76N and Q59L mutations were more prevalent and were associated with a relative risk of 12.6 for diabetes and with decreased glucose-stimulated insulin-secretion in nondiabetic subjects. We propose that IPF-1 mutations can cause MODY or apparently monogenic late-onset diabetes and that they represent a significant risk factor for type 2 diabetes in humans.
El Habib Hani, Doris A. Stoffers, Jean-Claude Chèvre, Emmanuelle Durand, Violeta Stanojevic, Christian Dina, Joel F. Habener, Philippe Froguel
The ABC1 transporter was identified as the defect in Tangier disease by a combined strategy of gene expression microarray analysis, genetic mapping, and biochemical studies. Patients with Tangier disease have a defect in cellular cholesterol removal, which results in near zero plasma levels of HDL and in massive tissue deposition of cholesteryl esters. Blocking the expression or activity of ABC1 reduces apolipoprotein-mediated lipid efflux from cultured cells, and increasing expression of ABC1 enhances it. ABC1 expression is induced by cholesterol loading and cAMP treatment and is reduced upon subsequent cholesterol removal by apolipoproteins. The protein is incorporated into the plasma membrane in proportion to its level of expression. Different mutations were detected in the ABC1 gene of 3 unrelated patients. Thus, ABC1 has the properties of a key protein in the cellular lipid removal pathway, as emphasized by the consequences of its defect in patients with Tangier disease.
Richard M. Lawn, David P. Wade, Michael R. Garvin, Xingbo Wang, Karen Schwartz, J. Gordon Porter, Jeffrey J. Seilhamer, Ashley M. Vaughan, John F. Oram
No posts were found with this tag.