Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from nasal biopsy samples collected following experimental human pneumococcal challenge in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B cell and CD161+CD8+ T cell clusters were significantly lower in colonized than in noncolonized subjects. By following a second cohort before and after pneumococcal challenge we observed that B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an expansion of Spn polysaccharide–specific and total plasmablasts in blood. Moreover, increased responses of blood mucosa-associated invariant T (MAIT) cells against in vitro stimulation with pneumococcus prior to challenge associated with protection against establishment of Spn colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells in the protection against pneumococcal colonization and demonstrate that colonization affects mucosal and circulating B cell populations.
Simon P. Jochems, Karin de Ruiter, Carla Solórzano, Astrid Voskamp, Elena Mitsi, Elissavet Nikolaou, Beatriz F. Carniel, Sherin Pojar, Esther L. German, Jesús Reiné, Alessandra Soares-Schanoski, Helen Hill, Rachel Robinson, Angela D. Hyder-Wright, Caroline M. Weight, Pascal F. Durrenberger, Robert S. Heyderman, Stephen B. Gordon, Hermelijn H. Smits, Britta C. Urban, Jamie Rylance, Andrea M. Collins, Mark D. Wilkie, Lepa Lazarova, Samuel C. Leong, Maria Yazdanbakhsh, Daniela M. Ferreira
Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole-genome RNA sequencing, gene set enrichment analysis, and immunohistochemistry. Our analyses revealed 5 mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: AR-high tumors (ARPC), AR-low tumors (ARLPC), amphicrine tumors composed of cells coexpressing AR and NE genes (AMPC), double-negative tumors (i.e., AR–/NE–; DNPC), and tumors with small cell or NE gene expression without AR activity (SCNPC). RE1 silencing transcription factor (REST) activity, which suppresses NE gene expression, was lost in AMPC and SCNPC PDX models. However, knockdown of REST in cell lines revealed that attenuated REST activity drives the AMPC phenotype but is not sufficient for SCNPC conversion. We also identified a subtype of DNPC tumors with squamous differentiation and generated an encompassing 26-gene transcriptional signature that distinguished the 5 mCRPC phenotypes. Together, our data highlight the central role of AR and REST in classifying treatment-resistant mCRPC phenotypes. These molecular classifications could potentially guide future therapeutic studies and clinical trial design.
Mark P. Labrecque, Ilsa M. Coleman, Lisha G. Brown, Lawrence D. True, Lori Kollath, Bryce Lakely, Holly M. Nguyen, Yu C. Yang, Rui M. Gil da Costa, Arja Kaipainen, Roger Coleman, Celestia S. Higano, Evan Y. Yu, Heather H. Cheng, Elahe A. Mostaghel, Bruce Montgomery, Michael T. Schweizer, Andrew C. Hsieh, Daniel W. Lin, Eva Corey, Peter S. Nelson, Colm Morrissey
Parkinson’s disease (PD) is a common neurodegenerative disease that lacks therapies to prevent progressive neurodegeneration. Impaired energy metabolism and reduced ATP levels are common features of PD. Previous studies revealed that terazosin (TZ) enhances the activity of phosphoglycerate kinase 1 (PGK1), thereby stimulating glycolysis and increasing cellular ATP levels. Therefore, we asked whether enhancement of PGK1 activity would change the course of PD. In toxin-induced and genetic PD models in mice, rats, flies, and induced pluripotent stem cells, TZ increased brain ATP levels and slowed or prevented neuron loss. The drug increased dopamine levels and partially restored motor function. Because TZ is prescribed clinically, we also interrogated 2 distinct human databases. We found slower disease progression, decreased PD-related complications, and a reduced frequency of PD diagnoses in individuals taking TZ and related drugs. These findings suggest that enhancing PGK1 activity and increasing glycolysis may slow neurodegeneration in PD.
Rong Cai, Yu Zhang, Jacob E. Simmering, Jordan L. Schultz, Yuhong Li, Irene Fernandez-Carasa, Antonella Consiglio, Angel Raya, Philip M. Polgreen, Nandakumar S. Narayanan, Yanpeng Yuan, Zhiguo Chen, Wenting Su, Yanping Han, Chunyue Zhao, Lifang Gao, Xunming Ji, Michael J. Welsh, Lei Liu
Cystic fibrosis (CF) lung disease is characterized by early and persistent mucus accumulation and neutrophilic inflammation in the distal airways. Identification of the factors in CF mucopurulent secretions that perpetuate CF mucoinflammation may provide strategies for novel CF pharmacotherapies. We show that IL-1β, with IL-1α, dominated the mucin prosecretory activities of supernatants of airway mucopurulent secretions (SAMS). Like SAMS, IL-1β alone induced MUC5B and MUC5AC protein secretion and mucus hyperconcentration in CF human bronchial epithelial (HBE) cells. Mechanistically, IL-1β induced the sterile α motif–pointed domain containing ETS transcription factor (SPDEF) and downstream endoplasmic reticulum to nucleus signaling 2 (ERN2) to upregulate mucin gene expression. Increased mRNA levels of IL1B, SPDEF, and ERN2 were associated with increased MUC5B and MUC5AC expression in the distal airways of excised CF lungs. Administration of an IL-1 receptor antagonist (IL-1Ra) blocked SAMS-induced expression of mucins and proinflammatory mediators in CF HBE cells. In conclusion, IL-1α and IL-1β are upstream components of a signaling pathway, including IL-1R1 and downstream SPDEF and ERN2, that generate a positive feedback cycle capable of producing persistent mucus hyperconcentration and IL-1α and/or IL-1β–mediated neutrophilic inflammation in the absence of infection in CF airways. Targeting this pathway therapeutically may ameliorate mucus obstruction and inflammation-induced structural damage in young CF children.
Gang Chen, Ling Sun, Takafumi Kato, Kenichi Okuda, Mary B. Martino, Aiman Abzhanova, Jennifer M. Lin, Rodney C. Gilmore, Bethany D. Batson, Yvonne K. O’Neal, Allison S. Volmer, Hong Dang, Yangmei Deng, Scott H. Randell, Brian Button, Alessandra Livraghi-Butrico, Mehmet Kesimer, Carla M.P. Ribeiro, Wanda K. O’Neal, Richard C. Boucher
The prognostic value of immune cell infiltration within the tumor microenvironment (TME) has been extensively investigated via histological and genomic approaches. Based on the positive prognostic value of T cell infiltration, Immunoscore has been developed and validated for predicting risk of recurrence for colorectal cancer (CRC). Also, association between a consensus T helper 1 (Th-1) immune response and favorable clinical outcomes has been observed across multiple cancer types. Here, we reanalyzed public genomic data sets from The Cancer Genome Atlas (TCGA) and NCBI Gene Expression Omnibus (NCBI-GEO) and performed multispectral immunohistochemistry (IHC) on a cohort of colorectal tumors. We identified and characterized a risk group, representing approximately 10% of CRC patients, with high intratumoral CD8+ T cell infiltration, but poor prognosis. These tumors included both microsatellite instable (MSI) and stable (MSS) phenotypes and had a high density of tumor-associated macrophages (TAMs) that expressed CD274 (programmed death-ligand 1 [PD-L1]), TGF-β activation, and an immune overdrive signature characterized by the overexpression of immune response and checkpoint genes. Our findings illustrate that CRC patients may have poor prognosis despite high CD8+ T cell infiltration and provide CD274 as a simple biomarker for identifying these patients.
Marwan Fakih, Ching Ouyang, Chongkai Wang, Travis Yiwey Tu, Maricel C. Gozo, May Cho, Marvin Sy, Jeffrey A. Longmate, Peter P. Lee
3-M primordial dwarfism is an inherited disease characterized by severe pre- and postnatal growth retardation and by mutually exclusive mutations in 3 genes, CUL7, OBSL1, and CCDC8. The mechanism underlying 3-M dwarfism is not clear. We showed here that CCDC8, derived from a retrotransposon Gag protein in placental mammals, exclusively localized on the plasma membrane and was phosphorylated by CK2 and GSK3. Phosphorylation of CCDC8 resulted in its binding first with OBSL1, and then CUL7, leading to the membrane assembly of the 3-M E3 ubiquitin ligase complex. We identified LL5β, a plasma membrane protein that regulates cell migration, as a substrate of 3-M ligase. Wnt inhibition of CCDC8 phosphorylation or patient-derived mutations in 3-M genes disrupted membrane localization of the 3-M complex and accumulated LL5β. Deletion of Ccdc8 in mice impaired trophoblast migration and placental development, resulting in intrauterine growth restriction and perinatal lethality. These results identified a mechanism regulating cell migration and placental development that underlies the development of 3-M dwarfism.
Pu Wang, Feng Yan, Zhijun Li, Yanbao Yu, Scott E. Parnell, Yue Xiong
Genetic susceptibility to type 2 diabetes is primarily due to β cell dysfunction. However, a genetic study to directly interrogate β cell function ex vivo has never been previously performed. We isolated 233,447 islets from 483 Diversity Outbred (DO) mice maintained on a Western-style diet, and measured insulin secretion in response to a variety of secretagogues. Insulin secretion from DO islets ranged greater than 1000-fold even though none of the mice were diabetic. The insulin secretory response to each secretagogue had a unique genetic architecture; some of the loci were specific for one condition, whereas others overlapped. Human loci that are syntenic to many of the insulin secretion quantitative trait loci (QTL) from mice are associated with diabetes-related SNPs in human genome-wide association studies. We report on 3 genes, Ptpn18, Hunk, and Zfp148, where the phenotype predictions from the genetic screen were fulfilled in our studies of transgenic mouse models. These 3 genes encode a nonreceptor type protein tyrosine phosphatase, a serine/threonine protein kinase, and a Krϋppel-type zinc-finger transcription factor, respectively. Our results demonstrate that genetic variation in insulin secretion that can lead to type 2 diabetes is discoverable in nondiabetic individuals.
Mark P. Keller, Mary E. Rabaglia, Kathryn L. Schueler, Donnie S. Stapleton, Daniel M. Gatti, Matthew Vincent, Kelly A. Mitok, Ziyue Wang, Takanao Ishimura, Shane P. Simonett, Christopher H. Emfinger, Rahul Das, Tim Beck, Christina Kendziorski, Karl W. Broman, Brian S. Yandell, Gary A. Churchill, Alan D. Attie
Lysophosphatidic acid (LPA) is a potent lipid mediator with various biological functions mediated through six G protein–coupled receptors (GPCRs), LPA1–LPA6. Previous studies have demonstrated that LPA–Gα12/Gα13 signaling plays an important role in embryonic vascular development. However, the responsible LPA receptors and underlying mechanisms are poorly understood. Here, we show a critical role of LPA4 and LPA6 in developmental angiogenesis. In mice, Lpa4;Lpa6 double-knockout (DKO) embryos were lethal due to global vascular deficiencies, and endothelial cell–specific (EC-specific) Lpa4;Lpa6-DKO retinas had impaired sprouting angiogenesis. Mechanistically, LPA activated the transcriptional regulators YAP and TAZ through LPA4/LPA6–mediated Gα12/Gα13–Rho–ROCK signaling in ECs. YAP/TAZ knockdown increased endothelial expression of the Notch ligand delta-like ligand 4 (DLL4) that was mediated by β-catenin and Notch intracellular domain (NICD). Fibrin gel sprouting assay revealed that LPA4/LPA6, Gα12/Gα13, or YAP/TAZ knockdown consistently blocked EC sprouting, which was rescued by a Notch inhibitor. Notably, the inhibition of Notch signaling also ameliorated impaired retinal angiogenesis in EC-specific Lpa4;Lpa6-DKO mice. Overall, these results suggest that the Gα12/Gα13–coupled receptors LPA4 and LPA6 synergistically regulate endothelial Dll4 expression through YAP/TAZ activation. This could in part account for the mechanism of YAP/TAZ–mediated developmental angiogenesis. Our findings provide insight into the biology of GPCR-activated YAP/TAZ.
Daisuke Yasuda, Daiki Kobayashi, Noriyuki Akahoshi, Takayo Ohto-Nakanishi, Kazuaki Yoshioka, Yoh Takuwa, Seiya Mizuno, Satoru Takahashi, Satoshi Ishii
The stimulator of IFN genes (STING) signaling pathway is a critical link between innate and adaptive immunity and induces antitumor immune responses. STING is expressed in vasculatures, but its role in tumor angiogenesis has not been elucidated. Here, we investigated STING-induced tumor vascular remodeling and the potential of STING-based combination immunotherapy. Endothelial STING expression was correlated with enhanced T cell infiltration and prolonged survival in human colon and breast cancer. Intratumoral STING activation with STING agonists (cGAMP or RR-CDA) normalized tumor vasculatures in implanted and spontaneous cancers, but not in STING-deficient mice. These were mediated by upregulation of type I/II IFN genes and vascular stabilizing genes (e.g., Angpt1, Pdgfrb, and Col4a). STING in nonhematopoietic cells is as important as STING in hematopoietic cells for inducing a maximal therapeutic efficacy of exogenous STING agonists. Vascular normalizing effects of STING agonists were dependent on type I IFN signaling and CD8+ T cells. Notably, STING-based immunotherapy was maximally effective when combined with VEGFR2 blockade and/or immune-checkpoint blockade (αPD-1 or αCTLA-4), leading to complete regression of immunotherapy-resistant tumors. Our data show that intratumoral STING activation can normalize tumor vasculature and the tumor microenvironment, providing a rationale for combining STING-based immunotherapy and antiangiogenic therapy.
Hannah Yang, Won Suk Lee, So Jung Kong, Chang Gon Kim, Joo Hoon Kim, Sei Kyung Chang, Sewha Kim, Gwangil Kim, Hong Jae Chon, Chan Kim
Inflammatory destruction of iron-rich myelin is characteristic of multiple sclerosis (MS). Although iron is needed for oligodendrocytes to produce myelin during development, its deposition has also been linked to neurodegeneration and inflammation, including in MS. We report perivascular iron deposition in multiple sclerosis lesions that was mirrored in 72 lesions from 13 marmosets with experimental autoimmune encephalomyelitis. Iron accumulated mainly inside microglia/macrophages from 6 weeks after demyelination. Consistently, expression of transferrin receptor, the brain’s main iron-influx protein, increased as lesions aged. Iron was uncorrelated with inflammation and postdated initial demyelination, suggesting that iron is not directly pathogenic. Iron homeostasis was at least partially restored in remyelinated, but not persistently demyelinated, lesions. Taken together, our results suggest that iron accumulation in the weeks after inflammatory demyelination may contribute to lesion repair rather than inflammatory demyelination per se.
Nathanael J. Lee, Seung-Kwon Ha, Pascal Sati, Martina Absinta, Govind Nair, Nicholas J. Luciano, Emily C. Leibovitch, Cecil C. Yen, Tracey A. Rouault, Afonso C. Silva, Steven Jacobson, Daniel S. Reich
No posts were found with this tag.