Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Virology

  • 128 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 12
  • 13
  • Next →
Glutamine supplementation suppresses herpes simplex virus reactivation
Kening Wang, … , Philip R. Krause, Jeffrey I. Cohen
Kening Wang, … , Philip R. Krause, Jeffrey I. Cohen
Published June 5, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI88990.
View: Text | PDF

Glutamine supplementation suppresses herpes simplex virus reactivation

  • Text
  • PDF
Abstract

Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1–infected mice and HSV-2–infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1–infected, glutamine-treated WT mice showed upregulation of several IFN-γ–inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1–infected IFN-γ–KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ–producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ–associated immune response and reduce the rate of reactivation of latent virus infection.

Authors

Kening Wang, Yo Hoshino, Kennichi Dowdell, Marta Bosch-Marce, Timothy G. Myers, Mayra Sarmiento, Lesley Pesnicak, Philip R. Krause, Jeffrey I. Cohen

×

The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis
Maria A. Stacey, … , Paul Kellam, Ian R. Humphreys
Maria A. Stacey, … , Paul Kellam, Ian R. Humphreys
Published February 27, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI84889.
View: Text | PDF

The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis

  • Text
  • PDF
Abstract

The antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) inhibits cell entry of a number of viruses, and genetic diversity within IFITM3 determines susceptibility to viral disease in humans. Here, we used the murine CMV (MCMV) model of infection to determine that IFITM3 limits herpesvirus-associated pathogenesis without directly preventing virus replication. Instead, IFITM3 promoted antiviral cellular immunity through the restriction of virus-induced lymphopenia, apoptosis-independent NK cell death, and loss of T cells. Viral disease in Ifitm3–/– mice was accompanied by elevated production of cytokines, most notably IL-6. IFITM3 inhibited IL-6 production by myeloid cells in response to replicating and nonreplicating virus as well as following stimulation with the TLR ligands Poly(I:C) and CpG. Although IL-6 promoted virus-specific T cell responses, uncontrolled IL-6 expression in Ifitm3–/– mice triggered the loss of NK cells and subsequently impaired control of MCMV replication. Thus, IFITM3 represents a checkpoint regulator of antiviral immunity that controls cytokine production to restrict viral pathogenesis. These data suggest the utility of cytokine-targeting strategies in the treatment of virus-infected individuals with impaired IFITM3 activity.

Authors

Maria A. Stacey, Simon Clare, Mathew Clement, Morgan Marsden, Juneid Abdul-Karim, Leanne Kane, Katherine Harcourt, Cordelia Brandt, Ceri A. Fielding, Sarah E. Smith, Rachael S. Wash, Silvia Gimeno Brias, Gabrielle Stack, George Notley, Emma L. Cambridge, Christopher Isherwood, Anneliese O. Speak, Zoë Johnson, Walter Ferlin, Simon A. Jones, Paul Kellam, Ian R. Humphreys

×

Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects
Elena Bekerman, … , Glenn Randall, Shirit Einav
Elena Bekerman, … , Glenn Randall, Shirit Einav
Published February 27, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89857.
View: Text | PDF

Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects

  • Text
  • PDF
Abstract

Global health is threatened by emerging viral infections, which largely lack effective vaccines or therapies. Targeting host pathways that are exploited by multiple viruses could offer broad-spectrum solutions. We previously reported that AAK1 and GAK, kinase regulators of the host adaptor proteins AP1 and AP2, are essential for hepatitis C virus (HCV) infection, but the underlying mechanism and relevance to other viruses or in vivo infections remained unknown. Here, we have discovered that AP1 and AP2 cotraffic with HCV particles in live cells. Moreover, we found that multiple viruses, including dengue and Ebola, exploit AAK1 and GAK during entry and infectious virus production. In cultured cells, treatment with sunitinib and erlotinib, approved anticancer drugs that inhibit AAK1 or GAK activity, or with more selective compounds inhibited intracellular trafficking of HCV and multiple unrelated RNA viruses with a high barrier to resistance. In murine models of dengue and Ebola infection, sunitinib/erlotinib combination protected against morbidity and mortality. We validated sunitinib- and erlotinib-mediated inhibition of AAK1 and GAK activity as an important mechanism of antiviral action. Additionally, we revealed potential roles for additional kinase targets. These findings advance our understanding of virus-host interactions and establish a proof of principle for a repurposed, host-targeted approach to combat emerging viruses.

Authors

Elena Bekerman, Gregory Neveu, Ana Shulla, Jennifer Brannan, Szu-Yuan Pu, Stanley Wang, Fei Xiao, Rina Barouch-Bentov, Russell R. Bakken, Roberto Mateo, Jennifer Govero, Claude M. Nagamine, Michael S. Diamond, Steven De Jonghe, Piet Herdewijn, John M. Dye, Glenn Randall, Shirit Einav

×

In situ analysis of intrahepatic virological events in chronic hepatitis B virus infection
Xiaonan Zhang, … , Zhanqing Zhang, Zhenghong Yuan
Xiaonan Zhang, … , Zhanqing Zhang, Zhenghong Yuan
Published February 22, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83339.
View: Text | PDF

In situ analysis of intrahepatic virological events in chronic hepatitis B virus infection

  • Text
  • PDF
Abstract

Persistent hepatitis B virus (HBV) infection is established by the formation of an intranuclear pool of covalently closed circular DNA (cccDNA) in the liver. Very little is known about the intrahepatic distribution of HBV cccDNA in infected patients, particularly at the single-cell level. Here, we established a highly sensitive and specific ISH assay for the detection of HBV RNA, DNA, and cccDNA. The specificity of our cccDNA probe set was confirmed by its strict intranuclear signal and by a series of Southern blot analyses. Use of our in situ assay in conjunction with IHC or immunofluorescence uncovered a surprisingly mosaic distribution of viral antigens and nucleic acids. Most strikingly, a mutually exclusive pattern was found between HBV surface antigen–positive (HBsA-positive) and HBV DNA– and cccDNA-positive cells. A longitudinal observation of patients over a 1-year period of adeforvir therapy confirmed the persistence of a nuclear reservoir of viral DNA, although cytoplasmic DNA was effectively depleted in these individuals. In conclusion, our method for detecting viral nucleic acids, including cccDNA, with single-cell resolution provides a means for monitoring intrahepatic virological events in chronic HBV infection. More important, our observations unravel the complexity of the HBV life cycle in vivo.

Authors

Xiaonan Zhang, Wei Lu, Ye Zheng, Weixia Wang, Lu Bai, Liang Chen, Yanling Feng, Zhanqing Zhang, Zhenghong Yuan

×

Ebola viral load at diagnosis associates with patient outcome and outbreak evolution
Marc-Antoine de La Vega, … , Michel Van Herp, Gary P. Kobinger
Marc-Antoine de La Vega, … , Michel Van Herp, Gary P. Kobinger
Published November 9, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI83162.
View: Text | PDF

Ebola viral load at diagnosis associates with patient outcome and outbreak evolution

  • Text
  • PDF
Abstract

BACKGROUND. Ebola virus (EBOV) causes periodic outbreaks of life-threatening EBOV disease in Africa. Historically, these outbreaks have been relatively small and geographically contained; however, the magnitude of the EBOV outbreak that began in 2014 in West Africa has been unprecedented. The aim of this study was to describe the viral kinetics of EBOV during this outbreak and identify factors that contribute to outbreak progression.

METHODS. From July to December 2014, one laboratory in Sierra Leone processed over 2,700 patient samples for EBOV detection by quantitative PCR (qPCR). Viremia was measured following patient admission. Age, sex, and approximate time of symptom onset were also recorded for each patient. The data was analyzed using various mathematical models to find trends of potential interest.

RESULTS. The analysis revealed a significant difference (P = 2.7 × 10–77) between the initial viremia of survivors (4.02 log10 genome equivalents [GEQ]/ml) and nonsurvivors (6.18 log10 GEQ/ml). At the population level, patient viral loads were higher on average in July than in November, even when accounting for outcome and time since onset of symptoms. This decrease in viral loads temporally correlated with an increase in circulating EBOV-specific IgG antibodies among individuals who were suspected of being infected but shown to be negative for the virus by PCR.

CONCLUSIONS. Our results indicate that initial viremia is associated with outcome of the individual and outbreak duration; therefore, care must be taken in planning clinical trials and interventions. Additional research in virus adaptation and the impacts of host factors on EBOV transmission and pathogenesis is needed.

Authors

Marc-Antoine de La Vega, Grazia Caleo, Jonathan Audet, Xiangguo Qiu, Robert A. Kozak, James I. Brooks, Steven Kern, Anja Wolz, Armand Sprecher, Jane Greig, Kamalini Lokuge, David K. Kargbo, Brima Kargbo, Antonino Di Caro, Allen Grolla, Darwyn Kobasa, James E. Strong, Giuseppe Ippolito, Michel Van Herp, Gary P. Kobinger

×

Human pDCs preferentially sense enveloped hepatitis A virions
Zongdi Feng, … , Christopher M. Walker, Stanley M. Lemon
Zongdi Feng, … , Christopher M. Walker, Stanley M. Lemon
Published November 21, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI77527.
View: Text | PDF

Human pDCs preferentially sense enveloped hepatitis A virions

  • Text
  • PDF
Abstract

Unlike other picornaviruses, hepatitis A virus (HAV) is cloaked in host membranes when released from cells, providing protection from neutralizing antibodies and facilitating spread in the liver. Acute HAV infection is typified by minimal type I IFN responses; therefore, we questioned whether plasmacytoid dendritic cells (pDCs), which produce IFN when activated, are capable of sensing enveloped virions (eHAV). Although concentrated nonenveloped virus failed to activate freshly isolated human pDCs, these cells produced substantial amounts of IFN-α via TLR7 signaling when cocultured with infected cells. pDCs required either close contact with infected cells or exposure to concentrated culture supernatants for IFN-α production. In isopycnic and rate-zonal gradients, pDC-activating material cosedimented with eHAV but not membrane-bound acetylcholinesterase, suggesting that eHAV, and not viral RNA exosomes, is responsible for IFN-α induction. pDC activation did not require virus replication and was associated with efficient eHAV uptake, which was facilitated by phosphatidylserine receptors on pDCs. In chimpanzees, pDCs were transiently recruited to the liver early in infection, during or shortly before maximal intrahepatic IFN-stimulated gene expression, but disappeared prior to inflammation onset. Our data reveal that, while membrane envelopment protects HAV against neutralizing antibody, it also facilitates an early but limited detection of HAV infection by pDCs.

Authors

Zongdi Feng, You Li, Kevin L. McKnight, Lucinda Hensley, Robert E. Lanford, Christopher M. Walker, Stanley M. Lemon

×

Trace amounts of sporadically reappearing HCV RNA can cause infection
Naga Suresh Veerapu, … , Todd M. Allen, Barbara Rehermann
Naga Suresh Veerapu, … , Todd M. Allen, Barbara Rehermann
Published July 8, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI73104.
View: Text | PDF

Trace amounts of sporadically reappearing HCV RNA can cause infection

  • Text
  • PDF
Abstract

Successful hepatitis C virus (HCV) treatment is defined as the absence of viremia 6 months after therapy cessation. We previously reported that trace amounts of HCV RNA, below the sensitivity of the standard clinical assay, can reappear sporadically in treatment responders. Here, we assessed the infectivity of this RNA and infused 3 chimpanzees sequentially at 9-week intervals with plasma or PBMCs from patients who tested positive for trace amounts of HCV RNA more than 6 months after completing pegylated IFN-α/ribavirin therapy. A fourth chimpanzee received HCV RNA–negative plasma and PBMCs from healthy blood donors. The 3 experimental chimpanzees, but not the control chimpanzee, generated HCV-specific T cell responses against nonstructural and structural HCV sequences 6–10 weeks after the first infusion of patient plasma and during subsequent infusions. In 1 chimpanzee, T cell responses declined, and this animal developed high-level viremia at week 27. Deep sequencing of HCV demonstrated transmission of a minor HCV variant from the first infusion donor that persisted in the chimpanzee for more than 6 months despite undetectable systemic viremia. Collectively, these results demonstrate that trace amounts of HCV RNA, which appear sporadically in successfully treated patients, can be infectious; furthermore, transmission can be masked in the recipient by an extended eclipse phase prior to establishing high-level viremia.

Authors

Naga Suresh Veerapu, Su-Hyung Park, Damien C. Tully, Todd M. Allen, Barbara Rehermann

×

CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses
Makoto Yamamoto, … , Takamitsu Hosoya, Masatoshi Hagiwara
Makoto Yamamoto, … , Takamitsu Hosoya, Masatoshi Hagiwara
Published July 8, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI73805.
View: Text | PDF

CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses

  • Text
  • PDF
Abstract

A wide range of antiviral drugs is currently available; however, drug-resistant viruses have begun to emerge and represent a potential public health risk. Here, we explored the use of compounds that inhibit or interfere with the action of essential host factors to prevent virus replication. In particular, we focused on the cyclin-dependent kinase 9 (CDK9) inhibitor, FIT-039, which suppressed replication of a broad spectrum of DNA viruses through inhibition of mRNA transcription. Specifically, FIT-039 inhibited replication of herpes simplex virus 1 (HSV-1), HSV-2, human adenovirus, and human cytomegalovirus in cultured cells, and topical application of FIT-039 ointment suppressed skin legion formation in a murine HSV-1 infection model. FIT-039 did not affect cell cycle progression or cellular proliferation in host cells. Compared with the general CDK inhibitor flavopiridol, transcriptome analyses of FIT-039–treated cells revealed that FIT-039 specifically inhibited CDK9. Given at concentrations above the inhibitory concentration, FIT-039 did not have a cytotoxic effect on mammalian cells. Importantly, administration of FIT-039 ameliorated the severity of skin lesion formation in mice infected with an acyclovir-resistant HSV-1, without noticeable adverse effects. Together, these data indicate that FIT-039 has potential as an antiviral agent for clinical therapeutics.

Authors

Makoto Yamamoto, Hiroshi Onogi, Isao Kii, Suguru Yoshida, Kei Iida, Hiroyuki Sakai, Minako Abe, Toshiaki Tsubota, Nobutoshi Ito, Takamitsu Hosoya, Masatoshi Hagiwara

×

Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome
Eric G. Meissner, … , Anthony S. Fauci, Shyamasundaran Kottilil
Eric G. Meissner, … , Anthony S. Fauci, Shyamasundaran Kottilil
Published July 1, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI75938.
View: Text | PDF

Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome

  • Text
  • PDF
Abstract

BACKGROUND. Hepatitis C virus (HCV) infects approximately 170 million people worldwide and may lead to cirrhosis and hepatocellular carcinoma in chronically infected individuals. Treatment is rapidly evolving from IFN-α–based therapies to IFN-α–free regimens that consist of directly acting antiviral agents (DAAs), which demonstrate improved efficacy and tolerability in clinical trials. Virologic relapse after DAA therapy is a common cause of treatment failure; however, it is not clear why relapse occurs or whether certain individuals are more prone to recurrent viremia.

METHODS. We conducted a clinical trial using the DAA sofosbuvir plus ribavirin (SOF/RBV) and performed detailed mRNA expression analysis in liver and peripheral blood from patients who achieved either a sustained virologic response (SVR) or relapsed.

RESULTS. On-treatment viral clearance was accompanied by rapid downregulation of IFN-stimulated genes (ISGs) in liver and blood, regardless of treatment outcome. Analysis of paired pretreatment and end of treatment (EOT) liver biopsies from SVR patients showed that viral clearance was accompanied by decreased expression of type II and III IFNs, but unexpectedly increased expression of the type I IFN IFNA2. mRNA expression of ISGs was higher in EOT liver biopsies of patients who achieved SVR than in patients who later relapsed.

CONCLUSION. These results suggest that restoration of type I intrahepatic IFN signaling by EOT may facilitate HCV eradication and prevention of relapse upon withdrawal of SOF/RBV.

TRIAL REGISTRATION. ClinicalTrials.gov NCT01441180.

FUNDING. Intramural Programs of the National Institute of Allergy and Infectious Diseases, National Institutes of Health Clinical Center, and National Cancer Institute; German Research Foundation.

Authors

Eric G. Meissner, David Wu, Anu Osinusi, Dimitra Bon, Kimmo Virtaneva, Dan Sturdevant, Steve Porcella, Honghui Wang, Eva Herrmann, John McHutchison, Anthony F. Suffredini, Michael Polis, Stephen Hewitt, Ludmila Prokunina-Olsson, Henry Masur, Anthony S. Fauci, Shyamasundaran Kottilil

×

RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction
Rachael M. Liesman, … , Peter L. Collins, Raymond J. Pickles
Rachael M. Liesman, … , Peter L. Collins, Raymond J. Pickles
Published April 8, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI72948.
View: Text | PDF

RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

  • Text
  • PDF
Abstract

Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease.

Authors

Rachael M. Liesman, Ursula J. Buchholz, Cindy L. Luongo, Lijuan Yang, Alan D. Proia, John P. DeVincenzo, Peter L. Collins, Raymond J. Pickles

×
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 12
  • 13
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts