Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Vascular biology

  • 320 Articles
  • 8 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 31
  • 32
  • Next →
Tryptophan metabolites suppress Wnt pathway and promote adverse limb events in CKD patients
Nkiruka V. Arinze, … , Nader Rahimi, Vipul C. Chitalia
Nkiruka V. Arinze, … , Nader Rahimi, Vipul C. Chitalia
Published November 9, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI142260.
View: Text | PDF

Tryptophan metabolites suppress Wnt pathway and promote adverse limb events in CKD patients

  • Text
  • PDF
Abstract

Chronic kidney disease (CKD) imposes a strong and independent risk for peripheral artery disease (PAD). While solutes retained in CKD patients (uremic solutes) inflict vascular damage, their role in PAD remain elusive. Here, we show that the dietary tryptophan-derived uremic solute including indoxyl sulfate (IS) and Kynurenine (Kyn), at concentrations corresponding to CKD patients suppressed β-catenin in several cell-types including microvascular endothelial cells (EC), inhibiting Wnt activity and proangiogenic Wnt targets in ECs. Mechanistic probing revealed that these uremic solutes downregulated β-catenin, dependent on serine 33 in its degron motif and through Aryl Hydrocarbon Receptor (AHR). Hindlimb ischemia in adenine-induced CKD and IS solute-specific mice models showed diminished β-catenin and VEGF-A in the capillaries and reduced capillary density, which correlated inversely with blood levels of IS and Kyn and AHR activity in ECs. An AHR inhibitor treatment normalized post-ischemic angiogenic response in CKD mice to a non-CKD level. In a prospective cohort of PAD patients, plasma levels of tryptophan metabolites and plasma’s AHR-inducing activity in ECs significantly increased the risk of future adverse limb events. This work uncovers tryptophan metabolites-AHR-β-catenin axis as a mediator of microvascular rarefaction in CKD patients and demonstrates its targetability for PAD in CKD models.

Authors

Nkiruka V. Arinze, Wenqing Yin, Saran Lotfollahzadeh, Marc Arthur Napoleon, Sean Richards, Joshua A. Walker, Mostafa Belghasem, Jonathan D. Ravid, Mohamed Hassan Kamel, Stephen A. Whelan, Norman Lee, Jeffrey J. Siracuse, Stephan Anderson, Alik Farber, David Sherr, Jean Francis, Naomi M. Hamburg, Nader Rahimi, Vipul C. Chitalia

×

Disrupted PI3K subunit p110α signaling protects against pulmonary hypertension and reverses established disease in rodents
Eva M. Berghausen, … , Ralph T. Schermuly, Stephan Rosenkranz
Eva M. Berghausen, … , Ralph T. Schermuly, Stephan Rosenkranz
Published October 1, 2021
Citation Information: J Clin Invest. 2021;131(19):e136939. https://doi.org/10.1172/JCI136939.
View: Text | PDF

Disrupted PI3K subunit p110α signaling protects against pulmonary hypertension and reverses established disease in rodents

  • Text
  • PDF
Abstract

Enhanced signaling via RTKs in pulmonary hypertension (PH) impedes current treatment options because it perpetuates proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Here, we demonstrated hyperphosphorylation of multiple RTKs in diseased human vessels and increased activation of their common downstream effector phosphatidylinositol 3′-kinase (PI3K), which thus emerged as an attractive therapeutic target. Systematic characterization of class IA catalytic PI3K isoforms identified p110α as the key regulator of pathogenic signaling pathways and PASMC responses (proliferation, migration, survival) downstream of multiple RTKs. Smooth muscle cell–specific genetic ablation or pharmacological inhibition of p110α prevented onset and progression of pulmonary hypertension (PH) as well as right heart hypertrophy in vivo and even reversed established vascular remodeling and PH in various animal models. These effects were attributable to both inhibition of vascular proliferation and induction of apoptosis. Since this pathway is abundantly activated in human disease, p110α represents a central target in PH.

Authors

Eva M. Berghausen, Wiebke Janssen, Marius Vantler, Leoni L. Gnatzy-Feik, Max Krause, Arnica Behringer, Christine Joseph, Mario Zierden, Henrik ten Freyhaus, Anna Klinke, Stephan Baldus, Miguel A. Alcazar, Rajkumar Savai, Soni Savai Pullamsetti, Dickson W.L. Wong, Peter Boor, Jean J. Zhao, Ralph T. Schermuly, Stephan Rosenkranz

×

Protein kinase N2 mediates flow-induced eNOS activation and vascular tone regulation
Young-June Jin, … , Nina Wettschureck, Stefan Offermanns
Young-June Jin, … , Nina Wettschureck, Stefan Offermanns
Published September 9, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI145734.
View: Text | PDF

Protein kinase N2 mediates flow-induced eNOS activation and vascular tone regulation

  • Text
  • PDF
Abstract

Formation of nitric oxide (NO) by the endothelial NO-synthase (eNOS) is a central process in the homeostatic regulation of vascular functions including blood pressure regulation and fluid shear stress exerted by the flowing blood is a main stimulus of eNOS activity. Previous work has identified several mechanosensing and -transducing processes in endothelial cells, which mediate this process and result in the stimulation of eNOS activity through phosphorylation of the enzyme via various kinases including AKT. How the initial mechanosensing and signaling processes are linked to eNOS phosphorylation is unclear. In human endothelial cells, we demonstrated that protein kinase N2 (PKN2), which is activated by flow through the mechanosensitive cation channel Piezo1 and Gq/G11-mediated signaling, as well as Ca2+ and PDK1, plays a pivotal role in this process. Active PKN2 promoted phosphorylation of human eNOS at serine 1177 and at a newly identified site, serine 1179. These phosphorylation events additively led to increased eNOS activity. PKN2-mediated eNOS phosphorylation at serine 1177 involved phosphorylation of AKT synergistically with mTORC2-mediated AKT phosphorylation while active PKN2 directly phosphorylated human eNOS at serine 1179. Mice with induced endothelium-specific deficiency of PKN2 showed strongly reduced flow-induced vasodilation and developed arterial hypertension accompanied by reduced eNOS activation. These results uncover a central mechanism that couples upstream mechanosignaling processes in endothelial cells to the regulation of eNOS-mediated NO formation, vascular tone and blood pressure.

Authors

Young-June Jin, Ramesh Chennupati, Rui Li, Guozheng Liang, ShengPeng Wang, András Iring, Johannes Graumann, Nina Wettschureck, Stefan Offermanns

×

Atrial natriuretic peptide promotes uterine decidualization and a TRAIL-dependent mechanism in spiral artery remodeling
Wei Zhang, … , Ningzheng Dong, Qingyu Wu
Wei Zhang, … , Ningzheng Dong, Qingyu Wu
Published September 2, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI151053.
View: Text | PDF

Atrial natriuretic peptide promotes uterine decidualization and a TRAIL-dependent mechanism in spiral artery remodeling

  • Text
  • PDF
Abstract

Atrial natriuretic peptide (ANP) is an important hormone in cardiovascular biology. It is activated by the protease corin. In pregnancy, ANP and corin promote uterine spiral artery remodeling, but the underlying mechanism remains unknown. Here we report an ANP function in uterine decidualization and TNF-related apoptosis-induced ligand (TRAIL)-dependent death in spiral arterial smooth muscle cells (SMCs) and endothelial cells (ECs). In ANP- or corin-deficient mice, uterine decidualization markers and TRAIL expression were decreased, whereas in cultured human endometrial stromal cells (HESCs), ANP increased decidualization and TRAIL expression. In uterine spiral arteries from pregnant wild-type mice, SMC and EC loss occurred sequentially before trophoblast invasion. In culture, TRAIL from decidualized HESCs induced apoptosis in uterine SMCs, but not in ECs with low TRAIL receptor expression. Subsequently, cyclophilin B was identified from apoptotic SMCs that up-regulated endothelial TRAIL receptor and caused apoptosis in ECs. These results indicate that ANP promotes decidualization and TRAIL expression in endometrial stromal cells, contributing to sequential events in remodeling spiral arteries, including SMC death and cyclophilin B release, which in turn induces TRAIL receptor expression and apoptosis in ECs.

Authors

Wei Zhang, Shuo Li, Jinglei Lou, Hui Li, Meng Liu, Ningzheng Dong, Qingyu Wu

×

Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension
Kel Vin Woo, … , Derek E. Byers, David M. Ornitz
Kel Vin Woo, … , Derek E. Byers, David M. Ornitz
Published September 1, 2021
Citation Information: J Clin Invest. 2021;131(17):e141467. https://doi.org/10.1172/JCI141467.
View: Text | PDF

Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension

  • Text
  • PDF
Abstract

Hypoxia-induced pulmonary hypertension (PH) is one of the most common and deadliest forms of PH. Fibroblast growth factor receptors 1 and 2 (FGFR1/2) are elevated in patients with PH and in mice exposed to chronic hypoxia. Endothelial FGFR1/2 signaling is important for the adaptive response to several injury types and we hypothesized that endothelial FGFR1/2 signaling would protect against hypoxia-induced PH. Mice lacking endothelial FGFR1/2, mice with activated endothelial FGFR signaling, and human pulmonary artery endothelial cells (HPAECs) were challenged with hypoxia. We assessed the effect of FGFR activation and inhibition on right ventricular pressure, vascular remodeling, and endothelial-mesenchymal transition (EndMT), a known pathologic change seen in patients with PH. Hypoxia-exposed mice lacking endothelial FGFRs developed increased PH, while mice overexpressing a constitutively active FGFR in endothelial cells did not develop PH. Mechanistically, lack of endothelial FGFRs or inhibition of FGFRs in HPAECs led to increased TGF-β signaling and increased EndMT in response to hypoxia. These phenotypes were reversed in mice with activated endothelial FGFR signaling, suggesting that FGFR signaling inhibits TGF-β pathway–mediated EndMT during chronic hypoxia. Consistent with these observations, lung tissue from patients with PH showed activation of FGFR and TGF-β signaling. Collectively, these data suggest that activation of endothelial FGFR signaling could be therapeutic for hypoxia-induced PH.

Authors

Kel Vin Woo, Isabel Y. Shen, Carla J. Weinheimer, Attila Kovacs, Jessica Nigro, Chieh-Yu Lin, Murali Chakinala, Derek E. Byers, David M. Ornitz

×

Skeleton-derived PDGF-BB mediates arterial stiffening
Lakshmi Santhanam, … , Xu Cao, Mei Wan
Lakshmi Santhanam, … , Xu Cao, Mei Wan
Published August 26, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI147116.
View: Text | PDF

Skeleton-derived PDGF-BB mediates arterial stiffening

  • Text
  • PDF
Abstract

Evidence links osteoporosis and cardiovascular disease but the cellular and molecular mechanisms are unclear. Here we identify skeleton-derived platelet-derived growth factor (PDGF)-BB as a key mediator of arterial stiffening in response to aging and metabolic stress. Aged mice and those fed high-fat diet (HFD), relative to young mice and those fed normal chow food diet, had higher serum PDGF-BB and developed bone loss and arterial stiffening. Mononuclear RANK+TRAP+ preosteoclasts in bone/bone marrow secrete excessive amount of PDGF-BB in aged mice and HFD mice. Conditioned medium prepared from preosteoclasts stimulated proliferation and migration of the vascular smooth muscle cells. Conditional transgenic mice, in which PDGF-BB is overexpressed in preosteoclasts, had 3 times the serum PDGF-BB concentration of controls and developed simultaneous bone loss and arterial stiffening at young age. Conversely, in conditional knockout mice, in which PDGF-BB is deleted selectively in preosteoclasts, HFD did not affect serum PDGF-BB concentration. Whereas wild-type mice fed HFD had augmented arterial stiffness, this effect was attenuated in conditional knockout mice. These studies confirm that preosteoclasts are a main source of excessive PDGF-BB in blood circulation during aging and metabolic stress and establish the role of skeleton-derived PDGF-BB as an important mediator of vascular stiffening.

Authors

Lakshmi Santhanam, Guanqiao Liu, Sandeep Jandu, Weiping Su, Bulouere P. Wodu, William Savage, Alan Poe, Xiaonan Liu, Lacy M. Alexander, Xu Cao, Mei Wan

×

Genetic blockade of lymphangiogenesis does not impair cardiac function after myocardial infarction
T.C. Stevenson Keller IV, … , Phyllis A. Gimotty, Mark L. Kahn
T.C. Stevenson Keller IV, … , Phyllis A. Gimotty, Mark L. Kahn
Published August 17, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI147070.
View: Text | PDF

Genetic blockade of lymphangiogenesis does not impair cardiac function after myocardial infarction

  • Text
  • PDF
Abstract

In recent decades, treatments for myocardial infarction (MI), such as stem and progenitor cell therapy, have attracted considerable scientific and clinical attention but failed to improve patient outcomes. These efforts indicate that more rigorous mechanistic and functional testing of potential MI therapies is required. Recent studies have suggested that augmenting post-MI lymphatic growth via VEGF-C administration improves cardiac function. However, the mechanisms underlying this proposed therapeutic approach remain vague and untested. To more rigorously test the role of lymphatic vessel growth after MI, we examined the post-MI cardiac function of mice in which lymphangiogenesis had been blocked genetically by pan-endothelial or lymphatic endothelial loss of the lymphangiogenic receptor VEGFR3 or global loss of the VEGF-C and VEGF-D ligands. The results obtained using all three genetic approaches were highly concordant and demonstrated that loss of lymphatic vessel growth did not impair left ventricular ejection fraction two weeks after MI in mice. We observed a trend toward excess fluid in the infarcted region of the left ventricle, but immune cell infiltration and clearance were unchanged with loss of expanded lymphatics. These studies refute the hypothesis that lymphangiogenesis contributes significantly to cardiac function after MI, and suggest that any effect of exogenous VEGF-C is likely to be mediated by non-lymphangiogenic mechanisms.

Authors

T.C. Stevenson Keller IV, Lillian Lim, Swapnil V. Shewale, Kendra McDaid, Ingrid Marti-Pamies, Alan T. Tang, Carl Wittig, Andrea A. Guerrero, Stephanie Sterling, N. Adrian Leu, marielle scherrer-crosbie, Phyllis A. Gimotty, Mark L. Kahn

×

Differential restoration of functional hyperemia by antihypertensive drug classes in hypertension-related cerebral small vessel diseases
Masayo Koide, … , Adam S. Greenstein, Mark Nelson
Masayo Koide, … , Adam S. Greenstein, Mark Nelson
Published August 5, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI149029.
View: Text | PDF

Differential restoration of functional hyperemia by antihypertensive drug classes in hypertension-related cerebral small vessel diseases

  • Text
  • PDF
Abstract

Dementia resulting from small vessel diseases of the brain (SVDs) is an emerging epidemic for which there is no treatment. Hypertension is the major risk factor for SVDs, but how hypertension damages the brain microcirculation is unclear. Here, we show that chronic hypertension in a mouse model progressively disrupts on-demand delivery of blood to metabolically active areas of the brain (functional hyperemia) through diminished activity of the capillary endothelial cell inward-rectifier potassium channel, Kir2.1. Despite similar efficacy in reducing blood pressure, amlodipine, a voltage-dependent calcium-channel blocker, prevented hypertension-related damage to functional hyperemia whereas losartan, an angiotensin II type-1 receptor blocker, did not. We attribute this drug class effect to losartan-induced ‘aldosterone breakthrough’, a phenomenon triggered by pharmacological interruption of the renin-angiotensin pathway leading to elevated plasma aldosterone levels. This hypothesis is supported by the finding that combining losartan with the aldosterone receptor antagonist eplerenone prevented the hypertension-related decline in functional hyperemia. Collectively, these data suggest Kir2.1 as a possible therapeutic target in vascular dementia and indicate that concurrent mineralocorticoid aldosterone receptor blockade may aid in protecting against late-life cognitive decline in hypertensive patients treated with angiotensin II type-1 receptor blockers.

Authors

Masayo Koide, Osama F. Harraz, Fabrice Dabertrand, Thomas A. Longden, Hannah R. Ferris, George C. Wellman, David C. Hill-Eubanks, Adam S. Greenstein, Mark Nelson

×

Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype
Laura Lecce, … , Emily Bernstein, Jason C. Kovacic
Laura Lecce, … , Emily Bernstein, Jason C. Kovacic
Published August 2, 2021
Citation Information: J Clin Invest. 2021;131(15):e131178. https://doi.org/10.1172/JCI131178.
View: Text | PDF

Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype

  • Text
  • PDF
Abstract

Endothelial-mesenchymal transition (EndMT) is associated with various cardiovascular diseases and in particular with atherosclerosis and plaque instability. However, the molecular pathways that govern EndMT are poorly defined. Specifically, the role of epigenetic factors and histone deacetylases (HDACs) in controlling EndMT and the atherosclerotic plaque phenotype remains unclear. Here, we identified histone deacetylation, specifically that mediated by HDAC9 (a class IIa HDAC), as playing an important role in both EndMT and atherosclerosis. Using in vitro models, we found class IIa HDAC inhibition sustained the expression of endothelial proteins and mitigated the increase in mesenchymal proteins, effectively blocking EndMT. Similarly, ex vivo genetic knockout of Hdac9 in endothelial cells prevented EndMT and preserved a more endothelial-like phenotype. In vivo, atherosclerosis-prone mice with endothelial-specific Hdac9 knockout showed reduced EndMT and significantly reduced plaque area. Furthermore, these mice displayed a more favorable plaque phenotype, with reduced plaque lipid content and increased fibrous cap thickness. Together, these findings indicate that HDAC9 contributes to vascular pathology by promoting EndMT. Our study provides evidence for a pathological link among EndMT, HDAC9, and atherosclerosis and suggests that targeting of HDAC9 may be beneficial for plaque stabilization or slowing the progression of atherosclerotic disease.

Authors

Laura Lecce, Yang Xu, Bhargavi V’Gangula, Nirupama Chandel, Venu Pothula, Axelle Caudrillier, Maria Paola Santini, Valentina d’Escamard, Delaine K. Ceholski, Przemek A. Gorski, Lijiang Ma, Simon Koplev, Martin Mæng Bjørklund, Johan L.M. Björkegren, Manfred Boehm, Jacob Fog Bentzon, Valentin Fuster, Ha Won Kim, Neal L. Weintraub, Andrew H. Baker, Emily Bernstein, Jason C. Kovacic

×

Foxo1 deletion promotes the growth of new lymphatic valves
Joshua P. Scallan, … , Michael J. Davis, Ying Yang
Joshua P. Scallan, … , Michael J. Davis, Ying Yang
Published July 15, 2021
Citation Information: J Clin Invest. 2021;131(14):e142341. https://doi.org/10.1172/JCI142341.
View: Text | PDF

Foxo1 deletion promotes the growth of new lymphatic valves

  • Text
  • PDF
Abstract

Patients with congenital lymphedema suffer from tissue swelling in part due to mutations in genes regulating lymphatic valve development. Lymphatic valve leaflets grow and are maintained throughout life in response to oscillatory shear stress (OSS), which regulates gene transcription in lymphatic endothelial cells (LECs). Here, we identified the first transcription factor, Foxo1, that repressed lymphatic valve formation by inhibiting the expression of valve-forming genes. We showed that both embryonic and postnatal ablation of Foxo1 in LECs induced additional valve formation in postnatal and adult mice in multiple tissues. Our quantitative analyses revealed that after deletion, the total number of valves in the mesentery was significantly (P < 0.01) increased in the Foxo1LEC-KO mice compared with Foxo1fl/fl controls. In addition, our quantitative real-time PCR (RT-PCR) data from cultured LECs showed that many valve-forming genes were significantly (P < 0.01) upregulated upon knockdown of FOXO1. To confirm our findings in vivo, rescue experiments showed that Foxc2+/– mice, a model of lymphedema-distichiasis, had 50% fewer lymphatic valves and that the remaining valves exhibited backleak. Both valve number and function were completely restored to control levels upon Foxo1 deletion. These findings established FOXO1 as a clinically relevant target to stimulate de novo lymphatic valve formation and rescue defective valves in congenital lymphedema.

Authors

Joshua P. Scallan, Luz A. Knauer, Huayan Hou, Jorge A. Castorena-Gonzalez, Michael J. Davis, Ying Yang

×
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 31
  • 32
  • Next →
MiR-33 fine-tunes atherosclerotic plaque inflammation
Mireille Ouimet, Hasini Ediriweera, and colleagues show that miR-33 controls the macrophage inflammatory program and promotes atherosclerotic plaque development…
Published October 26, 2015
Scientific Show StopperVascular biology

Contracting lacteals send lipids down the drain
Kibaek Choe, Jeon Yeob Jang, Intae Park and colleagues visualize lipid drainage through lacteals using intravital, video-rate microscopy…
Published October 5, 2015
Scientific Show StopperVascular biology

FOXC2 keeps lymphatic vessels leak-proof
Amélie Sabine and colleagues demonstrate that disturbed flow in lymphatic vasculature induces expression of the transcription factor FOXC2, which is essential for maintaining normal endothelial cell morphology and vessel integrity…
Published September 21, 2015
Scientific Show StopperVascular biology

Venous malformation model provides therapeutic insight
Elisa Boscolo and colleagues develop a murine model of venous malformation and demonstrate that rapamycin improves clinical symptoms of in this model and in patients…
Published August 10, 2015
Scientific Show StopperVascular biology

Lymphatic valves grow with the flow
Daniel Sweet and colleagues reveal that lymph flow is essential for lymphatic vessel maturation…
Published July 27, 2015
Scientific Show StopperVascular biology

GATA2 serves as a lymphatic rheostat
Jan Kazenwadel, Kelly Betterman, and colleagues reveal that the transcription factor GATA2 is essential for lymphatic valve development and maintenance…
Published July 27, 2015
Scientific Show StopperVascular biology

Factoring in factor XII in hereditary angioedema III
Jenny Björkqvist and colleagues elucidate the mechanism by which hereditary angioedema III-associated factor XII promotes vascular leakage…
Published July 20, 2015
Scientific Show StopperVascular biology

Regional regulation of atherosclerosis
Yogendra Kanthi, Matthew Hyman, and colleagues reveal that CD39 is regulated by blood flow and is protective against atherosclerosis…
Published June 29, 2015
Scientific Show StopperVascular biology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts