Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell pro-inflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin-33 (IL-33) is a local factor that directly restricts the pro-inflammatory capacity of graft infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of pro-inflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of pro-inflammatory macrophages. The local delivery of IL-33 in extracellular matrix based-based materials may be a promising biologic for chronic rejection prophylaxis.
Tengfang Li, Zhongqiang Zhang, Joseph Guido Bartolacci, Gaelen K. Dwyer, Quan Liu, Lisa Mathews, Murugesan Velayutham, Anna Roessing, Yoojin C. Lee, Helong Dai, Sruti Shiva, Martin H. Oberbarnscheidt, Jenna L. Dziki, Steven J. Mullett, Stacy G. Wendell, James D. Wilkinson, .Steven A Webber, Michelle A. Wood-Trageser, Simon C. Watkins, Anthony J. Demetris, George S. Hussey, Stephen F. Badylak, Heth R. Turnquist
Graft-versus-host-disease (GVHD) is a major cause of morbidity and mortality in hematopoietic stem cell transplantation (HSCT). Donor T cells are key mediators in pathogenesis but a contribution from host T cells has not been explored, as conditioning regimens are believed to deplete host T cells. To evaluate a potential role for host T cells in GVHD, the origin of skin and blood T cells was assessed prospectively in patients after HSCT in the absence of GVHD. While blood contained primarily donor-derived T cells, most T cells in the skin were host-derived. We next examined patient skin, colon and blood during acute GVHD. Host T cells were present in all skin and colon acute GVHD specimens studied yet were largely absent in blood. We observed acute skin GVHD in the presence of 100% host T cells. Analysis demonstrated that a subset of host T cells in peripheral tissues were proliferating (Ki67+) and producing the pro-inflammatory cytokines IFNγ and IL-17 in situ. Comparatively, the majority of antigen presenting cells (APC) in tissue in acute GVHD were donor-derived, and donor-derived APC were observed directly adjacent to host T cells. A humanized mouse model demonstrated that host skin-resident T cells could be activated by donor monocytes to generate a GVHD-like dermatitis. Thus, host tissue-resident T cells may play a previously unappreciated pathogenic role in acute GVHD.
Sherrie J. Divito, Anders T. Aasebo, Tiago R. Matos, Pei-Chen Hsieh, Matthew Collin, Christopher P. Elco, John T. O'Malley, Espen S. Bækkevold, Henrik M. Reims, Tobias Gedde-Dahl, Michael Hagerstrom, Jude Hilaire, John W. Lian, Edgar L. Milford, Geraldine S. Pinkus, Vincent T. Ho, Robert J. Soiffer, Haesook T. Kim, Martin C. Mihm Jr, Jerome Ritz, Indira Guleria, Corey S. Cutler, Rachael Clark, Frode L. Jahnsen, Thomas S. Kupper
The absence of alloantibodies is a feature of transplantation tolerance. Although the lack of T cell help has been evoked to explain this absence, herein we provide evidence for B cell–intrinsic tolerance mechanisms. Using a murine model of heart tolerance, we showed that alloreactive B cells were not deleted but rapidly lost their ability to differentiate into germinal center B cells and secrete donor-specific antibodies. We inferred that tolerant alloreactive B cells retained their ability to sense alloantigen because they continued to drive T cell maturation into CXCR5+PD-1+ T follicular helper cells. Unexpectedly, dysfunctional alloreactive B cells acquired the ability to inhibit antibody production by new naive B cells in an antigen-specific manner. Thus, tolerant alloreactive B cells contribute to transplantation tolerance by foregoing germinal center responses while retaining their ability to function as antigen-presenting cells and by actively suppressing de novo alloreactive B cell responses.
Stella H.W. Khiew, Dharmendra Jain, Jianjun Chen, Jinghui Yang, Dengping Yin, James S. Young, Alexander Dent, Roger Sciammas, Maria-Luisa Alegre, Anita S. Chong
Myelopoiesis is invariably present, and contributes to pathology, in animal models of graft versus host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties and role in pathogenesis of these cells, we isolated single cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome and in vitro functional analysis. A donor-derived population of CD11c+CD14+ cells was the dominant population of all leukocytes in GVHD. Surface phenotype and nanostring gene expression profiling indicated the closest steady-state counterpart of these cells to be monocyte-derived macrophages. In GVHD, however, there was upregulation of monocyte antigens SIRPα and S100A8/9, and transcripts associated with leukocyte trafficking, pattern recognition, antigen presentation, and co-stimulation. Isolated GVHD macrophages stimulated greater proliferation and activation of allogeneic T cells, and secreted higher levels of inflammatory cytokines than their steady-state counterparts. In HLA-matched mixed leukocyte reactions, we also observed differentiation of activated macrophages with a similar phenotype. These exhibited cytopathicity to a cell line and mediated pathological damage to skin explants, independently of T cells. Together, these results define the origin, functional properties and potential pathogenic roles of human GVHD macrophages.
Laura Jardine, Urszula Cytlak, Merry Gunawan, Gary Reynolds, Kile Green, Xiao-nong Wang, Sarah Pagan, Maharani Paramitha, Christopher A. Lamb, Anna Long, Erin Hurst, Smeera Nair, Graham H. Jackson, Amy Publicover, Venetia Bigley, Muzlifah Haniffa, AJ Simpson, Matthew Collin
Graft-versus-host disease (GVHD) remains an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). For decades, GVHD prophylaxis has included calcineurin-inhibitors, despite their incomplete efficacy and impairment of graft-versus-leukemia (GVL). Distinct from pharmacologic immune suppression, we have developed a novel, human CD83-targeted chimeric antigen receptor (CAR) T cell for GVHD prevention. CD83 is expressed on allo-activated, conventional CD4+ T cells (Tconv) and proinflammatory dendritic cells (DC); which are both implicated in GVHD pathogenesis. Human CD83 CAR T cells eradicate pathogenic CD83+ target cells, significantly increase the ratio of regulatory T cells (Treg) to allo-activated Tconv, and provide durable prevention of xenogeneic GVHD. CD83 CAR T cells are also capable of treating xenogeneic GVHD. We show human, acute myeloid leukemia (AML) expresses CD83 and myeloid leukemia cell lines are readily killed by CD83 CAR T cells. Human CD83 CAR T cells are a promising cell-based approach to prevent two critical complications of allo-HCT; GVHD and relapse. Thus, human CD83 CAR T cells warrant clinical investigation in GVHD prevention and treatment, as well as targeting CD83+ AML.
Bishwas Shrestha, Kelly Walton, Jordan Reff, Elizabeth M. Sagatys, Nhan Tu, Justin C. Boucher, Gongbo Li, Tayyeb Ghafoor, Martin Felices, Jeffrey Miller, Joseph Pidala, Bruce R. Blazar, Claudio Anasetti, Brian C. Betts, Marco L. Davila
Despite the widespread use of antibiotics, bacterial pneumonias in donors strongly predispose to the fatal syndrome of primary graft dysfunction (PGD) following lung transplantation. We report that bacterial endotoxin persists in human donor lungs after pathogen is cleared with antibiotics and is associated with neutrophil infiltration and PGD. In mouse models, depletion of tissue-resident alveolar macrophages (TRAM) attenuated neutrophil recruitment in response to endotoxin as shown by compartmental staining and intravital imaging. Bone marrow chimeric mice revealed that neutrophils were recruited by TRAM through activation of TLR4 in a MyD88-dependent manner. Intriguingly, low levels of endotoxin, insufficient to cause donor lung injury, promoted TRAM-dependent production of CXCL2, increased neutrophil recruitment, and led to PGD, which was independent of donor non-classical monocytes. Reactive oxygen species (ROS) increased in human donor lungs starting from the warm-ischemia phase and were associated with increased transcription and translocation to the plasma membrane of TLR4 in donor TRAM. Consistently, scavenging ROS or inhibiting their production to prevent TLR4 transcription/translocation or blockade of TLR4 or co-receptor CD14 on donor TRAM prevented neutrophil recruitment in response to endotoxin and ameliorated PGD. Our studies demonstrate that residual endotoxin after successful treatment of donor bacterial pneumonia promotes PGD through ischemia-reperfusion-primed donor TRAM..
Mahzad Akbarpour, Emilia Lecuona, Stephen Chiu, Qiang Wu, Melissa Querrey, Ramiro Fernandez, Felix Luis Nunez-Santana, Haiying Sun, Sowmya Ravi, Chitaru Kurihara, James M. Walter, Nikita Joshi, Ziyou Ren, Scott C. Roberts, Alan R. Hauser, Daniel Kreisel, Wenjun Li, Navdeep Chandel, Alexander V. Misharin, Thalachallour Mohanakumar, G.R. Scott Budinger, Ankit Bharat
Alloantibodies in pre-sensitized transplant candidates deposit complement membrane attack complexes (MAC) on graft endothelial cells (ECs), increasing risk of CD8+ T cell-mediated acute rejection. We recently showed (a) human ECs endocytose MAC into Rab5+ endosomes, creating a signaling platform that stabilizes NF-κB–inducing kinase (NIK) protein; (b) endosomal NIK activates both non-canonical NF-κB signaling to synthesize pro-IL-1β and an NLRP3 inflammasome to process and secrete active IL-1β; and (c) IL-1β activates ECs, increasing recruitment and activation of alloreactive effector memory CD4+ T (TEM) cells. Here, we report IFN-γ priming induced nuclear expression of IL-15/IL-15Rα complexes in cultured human ECs and that MAC-induced IL-1β stimulated translocation of IL-15/IL-15Rα complexes to the EC surface in a canonical NF-κB-dependent process, where IL-15/IL-15Rα transpresentation increased activation and maturation of alloreactive CD8+ TEM. Blocking NLRP3 inflammasome assembly, IL-1 receptor or IL-15 on ECs inhibited the augmented CD8+ TEM responses, indicating this pathway was not redundant. Adoptively transferred alloantibody and mouse complement deposition induced IL-15/IL-15Rα expression by human ECs lining human coronary artery grafts in immunodeficient mice and enhanced intimal CD8+ T cell infiltration, which was markedly reduced by inflammasome inhibition, linking alloantibody to acute rejection. Inhibiting MAC signaling may similarly limit other complement-mediated pathologies.
Catherine B. Xie, Bo Jiang, Lingfeng Qin, George Tellides, Nancy C. Kirkiles-Smith, Dan Jane-wit, Jordan S. Pober
Although CEACAM1 (CC1) glycoprotein resides at the interface of immune liver injury and metabolic homeostasis, its role in orthotopic liver transplantation (OLT) remains elusive. We aimed to determine whether/how CEACAM1 signaling may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. In the mouse, donor liver CC1 null mutation augmented IRI-OLT (CC1-KO>WT) by enhancing ROS expression and HMGB1 translocation during cold storage, data supported by in vitro studies where hepatic flush from CC1-deficient livers enhanced macrophage activation in BMDM cultures. Although hepatic CC1 deficiency augmented cold stress-triggered ASK1/p-p38 upregulation, adjunctive ASK1 inhibition alleviated IRI/improved OLT survival by suppressing p-p38 upregulation, ROS induction/HMGB1 translocation (CC1-KO>WT); while ASK1 silencing (siRNA) promoted cytoprotection in cold-stressed and damage-prone CC1-deficient hepatocyte cultures. Consistent with mouse data, CEACAM1 expression in sixty human donor liver biopsies correlated negatively with activation of ASK1/p-p38 axis; while low-CC1 levels associated with increased ROS/HMGB1 translocation, enhanced innate/adaptive immune responses and inferior early OLT function. Notably, reduced donor liver CEACAM1 expression was identified as one of independent predictors for EAD in human OLT patients. Thus, as a checkpoint regulator of IR-stress/sterile inflammation, CEACAM1 may be considered as a denominator of donor hepatic tissue quality, and a target for therapeutic modulation in OLT recipients.
Kojiro Nakamura, Shoichi Kageyama, Fady M. Kaldas, Hirofumi Hirao, Takahiro Ito, Kentaro Kadono, Kenneth J. Dery, Hidenobu Kojima, David W. Gjertson, Rebecca A. Sosa, Maciej Kujawski, Ronald W. Busuttil, Elaine F. Reed, Jerzy W. Kupiec-Weglinski
Lymph node stromal cells (LNSC) regulate immunity through constructing lymphocyte niches. LNSC produced Laminin α5 (Lama5) regulates CD4 T cells but the underlying mechanisms of its functions are poorly understood. Here we showed depleting Lama5 in LNSC resulted in decreased Lama5 protein in the LN cortical ridge (CR) and around high endothelial venules (HEV). Lama5 depletion affected LN structure with increased HEV, upregulated chemokines and cell adhesion molecules, and led to greater numbers of Treg in T cell zone. Mouse and human T cell transendothelial migration and T cell entry to LN were suppressed by Lama5 through the receptors a6 integrin and α-dystroglycan. During immune responses and allograft transplantation, depleting Lama5 promoted antigen specific CD4 T cell entry to the CR through HEV, suppressed T cell activation and altered T cell differentiation to suppressive regulatory phenotypes. Enhanced allograft acceptance resulted from depleting Lama5 or blockade of T cell Lama5 receptors. Lama5 and Lama4:Lama5 ratios in allografts were associated with the rejection severity. Overall, our results demonstrated that stromal Lama5 regulated immune responses through altering LN structures and T cell behaviors. The study delineated a stromal Lama5-T cell receptors axis that can be targeted for immune tolerance modulation.
Lushen Li, Marina W. Shirkey, Tianshu Zhang, Yanbao Xiong, Wenji Piao, Vikas Saxena, Christina Paluskievicz, Young S. Lee, Nicholas Toney, Benjamin M. Cerel, Qinshan Li, Thomas Simon, Kyle D. Smith, Keli L. Hippen, Bruce R. Blazar, Reza Abdi, Jonathan S. Bromberg
Background. Preclinical experiments have shown that donor blood cells, modified in vitro by an alkylating agent (MIC, modified immune cells), induced long-term specific immunosuppression against the allogeneic donor. Methods. In this phase-I trial, patients received either 1.5x106 MIC per kg b.w. on day -2 (N=3, group A), or 1.5x108 MIC per kg b.w. on day -2 (N=3, group B) or day -7 (N=4, group C) before living donor kidney transplantation in addition to post-transplant immunosuppression. Primary outcome measure was the frequency of adverse events (AE) until day 30 (study phase) with follow-up to day 360. Results. MIC infusions were extremely well tolerated. During the study phase, a total of 69 AE occurred in 10 treated patients which were unlikely/not related to MIC infusion. No donor-specific human leukocyte antigen antibodies or rejection episodes were noted even though the patients received up to 1.3x1010 of donor mononuclear cells prior to transplantation. Group C patients with low immunosuppression during follow-up showed no in vitro reactivity against stimulatory donor blood cells on day 360 while reactivity against third party cells was preserved. Frequencies of CD19+CD24highCD38high transitional B lymphocytes (Breg) increased from a median of 6% before MIC infusion to 20% on day 180, which was 19- and 68-fold higher, respectively, than in two independent cohorts of transplanted controls. The majority of Breg produced immunosuppressive cytokine IL-10. MIC-treated patients showed the Immune Tolerance Network operational tolerance signature. Conclusion. MIC administration was safe and could be a future tool for the targeted induction of tolerogenic Breg.
Christian Morath, Anita Schmitt, Christian Kleist, Volker Daniel, Gerhard Opelz, Caner Süsal, Eman H. Ibrahim, Florian Kälble, Claudius Speer, Christian Nusshag, Luiza Pego da Silva, Claudia Sommerer, Lei Wang, Ming Ni, Angela Hückelhoven-Krauss, David Czock, Uta Merle, Arianeb Mehrabi, Anja Sander, Matthes Hackbusch, Christoph Eckert, Rüdiger Waldherr, Paul Schnitzler, Carsten Müller-Tidow, Jörg D. Hoheisel, Shakhawan A. Mustafa, Mohamed S.S. Alhamdani, Andrea S Bauer, Jochen Reiser, Martin Zeier, Michael Schmitt, Matthias Schaier, Peter Terness
No posts were found with this tag.