Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Transplantation

  • 148 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • …
  • 14
  • 15
  • Next →
Favorable outcomes of COVID-19 in recipients of hematopoietic cell transplantation
Gunjan L. Shah, … , Genovefa A. Papanicolaou, Miguel-Angel Perales
Gunjan L. Shah, … , Genovefa A. Papanicolaou, Miguel-Angel Perales
Published September 8, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI141777.
View: Text | PDF

Favorable outcomes of COVID-19 in recipients of hematopoietic cell transplantation

  • Text
  • PDF
Abstract

BACKGROUND. Understanding outcomes and immunologic characteristics of cellular therapy recipients with SARS-CoV-2 is critical to performing these potentially life-saving therapies in the COVID-19 era. In this study of recipients of allogeneic (Allo) and autologous (Auto) hematopoietic cell transplant and CD19-directed chimeric antigen receptor T cell therapy (CAR-T) at Memorial Sloan Kettering Cancer Center, we aimed to identify clinical variables associated with COVID-19 severity and assess lymphocyte populations. METHODS. We retrospectively investigated patients diagnosed between March 15th and May 7th, 2020. In a subset of patients, lymphocyte immunophenotyping, quantitative real-time PCR from nasopharyngeal swabs, and SARS-CoV-2 antibody status were available. RESULTS. We identified 77 SARS-CoV-2 + cellular therapy recipients (Allo = 35, Auto = 37, CAR-T = 5; median time from cellular therapy 782 days (IQR 354,1611). Overall survival at 30 days was 78%. Clinical variables significantly associated with the composite endpoint of non-rebreather or higher oxygen requirement and death (n events = 25/77) included number of co-morbidities (HR 5.41, P = 0.004), infiltrates (HR 3.08, P = 0.032), and neutropenia (HR 1.15, P = 0.04). Worsening graft-versus-host-disease was not identified among Allo subjects. Immune profiling revealed reductions and rapid recovery in lymphocyte populations across lymphocyte subsets. Antibody responses were seen in a subset of patients. CONCLUSION. In this series of Allo, Auto, and CAR-T recipients, we report overall favorable clinical outcomes for COVID-19 patients without active malignancy and provide preliminary insights into the lymphocyte populations that are key for the anti-viral response and immune reconstitution. FUNDING. NIH P01 CA23766, NIH/NCI P30 CA008748.

Authors

Gunjan L. Shah, Susan DeWolf, Yeon Joo Lee, Roni Tamari, Parastoo B. Dahi, Jessica A. Lavery, Josel D. Ruiz, Sean M. Devlin, Christina Cho, Jonathan U. Peled, Ioannis Politikos, Michael Scordo, N. Esther Babady, Tania Jain, Santosha Vardhana, Anthony F. Daniyan, Craig S. Sauter, Juliet N. Barker, Sergio A. Giralt, Cheryl Goss, Peter Maslak, Tobias M. Hohl, Mini Kamboj, Lakshmi Ramanathan, Marcel R.M. van den Brink, Esperanza B. Papadopoulos, Genovefa A. Papanicolaou, Miguel-Angel Perales

×

Haploidentical mixed chimerism cures autoimmunity in established type 1 diabetic mice
Yuqing Liu, … , Zhang Xi, Defu Zeng
Yuqing Liu, … , Zhang Xi, Defu Zeng
Published August 20, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI131799.
View: Text | PDF

Haploidentical mixed chimerism cures autoimmunity in established type 1 diabetic mice

  • Text
  • PDF
Abstract

Clinical trials are currently testing whether induction of MHC-haploidentical mixed chimerism (Haplo-MC) induces organ transplantation tolerance. Whether Haplo-MC can be used to treat established autoimmune diseases remains unknown. Here, we show that established autoimmunity in euthymic and adult-thymectomized NOD (H-2g7) mice was cured by induction of Haplo-MC under a non-myeloablative anti-thymocyte globulin-based conditioning regimen and infusion of CD4+ T-depleted hematopoietic graft from H-2b/g7 F1 donors that express autoimmune-resistant H-2b or from H-2s/g7 F1 donors that express autoimmune susceptible H-2s. The cure was associated with enhanced thymic negative selection, increased thymic Treg (tTreg) production, and anergy or exhaustion of residual host-type autoreactive T cells in the periphery. The peripheral tolerance was accompanied with expansion of donor- and host-type CD62L1Helios+ tTreg as well as host-type Helios-Nrp1+ peripheral Treg (pTreg) and PD-L1hi plasmacytoid DCs (pDC). Depletion of donor- or host-type Treg cells led to reduction of host-type PD-L1hi pDCs and recurrence of autoimmunity; whereas PD-L1 deficiency in host-type DCs led to reduction of host-type pDCs and Helios-Nrp1+ pTreg cells. Thus, induction of Haplo-MC re-established both central and peripheral tolerance through mechanisms that depend on allo-MHC+ donor-type DC, PD-L1hi host-type DCs, and the generation and persistence of donor and host-type tTreg and pTreg cells.

Authors

Yuqing Liu, Xiaoqi Wang, Yongping Zhu, Mingfeng Zhang, Ubaydah Nasri, Sharne S. Sun, Stephen J. Forman, Arthur D. Riggs, Zhang Xi, Defu Zeng

×

Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection
Tengfang Li, … , Stephen F. Badylak, Heth R. Turnquist
Tengfang Li, … , Stephen F. Badylak, Heth R. Turnquist
Published July 9, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133008.
View: Text | PDF

Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection

  • Text
  • PDF
Abstract

Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell pro-inflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin-33 (IL-33) is a local factor that directly restricts the pro-inflammatory capacity of graft infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of pro-inflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of pro-inflammatory macrophages. The local delivery of IL-33 in extracellular matrix based-based materials may be a promising biologic for chronic rejection prophylaxis.

Authors

Tengfang Li, Zhongqiang Zhang, Joseph Guido Bartolacci, Gaelen K. Dwyer, Quan Liu, Lisa Mathews, Murugesan Velayutham, Anna Roessing, Yoojin C. Lee, Helong Dai, Sruti Shiva, Martin H. Oberbarnscheidt, Jenna L. Dziki, Steven J. Mullett, Stacy G. Wendell, James D. Wilkinson, .Steven A Webber, Michelle A. Wood-Trageser, Simon C. Watkins, Anthony J. Demetris, George S. Hussey, Stephen F. Badylak, Heth R. Turnquist

×

Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host-disease
Sherrie J. Divito, … , Frode L. Jahnsen, Thomas S. Kupper
Sherrie J. Divito, … , Frode L. Jahnsen, Thomas S. Kupper
Published June 9, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI129965.
View: Text | PDF

Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host-disease

  • Text
  • PDF
Abstract

Graft-versus-host-disease (GVHD) is a major cause of morbidity and mortality in hematopoietic stem cell transplantation (HSCT). Donor T cells are key mediators in pathogenesis but a contribution from host T cells has not been explored, as conditioning regimens are believed to deplete host T cells. To evaluate a potential role for host T cells in GVHD, the origin of skin and blood T cells was assessed prospectively in patients after HSCT in the absence of GVHD. While blood contained primarily donor-derived T cells, most T cells in the skin were host-derived. We next examined patient skin, colon and blood during acute GVHD. Host T cells were present in all skin and colon acute GVHD specimens studied yet were largely absent in blood. We observed acute skin GVHD in the presence of 100% host T cells. Analysis demonstrated that a subset of host T cells in peripheral tissues were proliferating (Ki67+) and producing the pro-inflammatory cytokines IFNγ and IL-17 in situ. Comparatively, the majority of antigen presenting cells (APC) in tissue in acute GVHD were donor-derived, and donor-derived APC were observed directly adjacent to host T cells. A humanized mouse model demonstrated that host skin-resident T cells could be activated by donor monocytes to generate a GVHD-like dermatitis. Thus, host tissue-resident T cells may play a previously unappreciated pathogenic role in acute GVHD.

Authors

Sherrie J. Divito, Anders T. Aasebo, Tiago R. Matos, Pei-Chen Hsieh, Matthew Collin, Christopher P. Elco, John T. O'Malley, Espen S. Bækkevold, Henrik M. Reims, Tobias Gedde-Dahl, Michael Hagerstrom, Jude Hilaire, John W. Lian, Edgar L. Milford, Geraldine S. Pinkus, Vincent T. Ho, Robert J. Soiffer, Haesook T. Kim, Martin C. Mihm Jr, Jerome Ritz, Indira Guleria, Corey S. Cutler, Rachael Clark, Frode L. Jahnsen, Thomas S. Kupper

×

Transplantation tolerance modifies donor-specific B cell fate to suppress de novo alloreactive B cells
Stella H.W. Khiew, … , Maria-Luisa Alegre, Anita S. Chong
Stella H.W. Khiew, … , Maria-Luisa Alegre, Anita S. Chong
Published May 26, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132814.
View: Text | PDF

Transplantation tolerance modifies donor-specific B cell fate to suppress de novo alloreactive B cells

  • Text
  • PDF
Abstract

The absence of alloantibodies is a feature of transplantation tolerance. Although the lack of T cell help has been evoked to explain this absence, herein we provide evidence for B cell–intrinsic tolerance mechanisms. Using a murine model of heart tolerance, we showed that alloreactive B cells were not deleted but rapidly lost their ability to differentiate into germinal center B cells and secrete donor-specific antibodies. We inferred that tolerant alloreactive B cells retained their ability to sense alloantigen because they continued to drive T cell maturation into CXCR5+PD-1+ T follicular helper cells. Unexpectedly, dysfunctional alloreactive B cells acquired the ability to inhibit antibody production by new naive B cells in an antigen-specific manner. Thus, tolerant alloreactive B cells contribute to transplantation tolerance by foregoing germinal center responses while retaining their ability to function as antigen-presenting cells and by actively suppressing de novo alloreactive B cell responses.

Authors

Stella H.W. Khiew, Dharmendra Jain, Jianjun Chen, Jinghui Yang, Dengping Yin, James S. Young, Alexander Dent, Roger Sciammas, Maria-Luisa Alegre, Anita S. Chong

×

Donor monocyte-derived macrophages promote human acute graft versus host disease
Laura Jardine, … , AJ Simpson, Matthew Collin
Laura Jardine, … , AJ Simpson, Matthew Collin
Published May 26, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133909.
View: Text | PDF

Donor monocyte-derived macrophages promote human acute graft versus host disease

  • Text
  • PDF
Abstract

Myelopoiesis is invariably present, and contributes to pathology, in animal models of graft versus host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties and role in pathogenesis of these cells, we isolated single cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome and in vitro functional analysis. A donor-derived population of CD11c+CD14+ cells was the dominant population of all leukocytes in GVHD. Surface phenotype and nanostring gene expression profiling indicated the closest steady-state counterpart of these cells to be monocyte-derived macrophages. In GVHD, however, there was upregulation of monocyte antigens SIRPα and S100A8/9, and transcripts associated with leukocyte trafficking, pattern recognition, antigen presentation, and co-stimulation. Isolated GVHD macrophages stimulated greater proliferation and activation of allogeneic T cells, and secreted higher levels of inflammatory cytokines than their steady-state counterparts. In HLA-matched mixed leukocyte reactions, we also observed differentiation of activated macrophages with a similar phenotype. These exhibited cytopathicity to a cell line and mediated pathological damage to skin explants, independently of T cells. Together, these results define the origin, functional properties and potential pathogenic roles of human GVHD macrophages.

Authors

Laura Jardine, Urszula Cytlak, Merry Gunawan, Gary Reynolds, Kile Green, Xiao-nong Wang, Sarah Pagan, Maharani Paramitha, Christopher A. Lamb, Anna Long, Erin Hurst, Smeera Nair, Graham H. Jackson, Amy Publicover, Venetia Bigley, Muzlifah Haniffa, AJ Simpson, Matthew Collin

×

Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease
Bishwas Shrestha, … , Brian C. Betts, Marco L. Davila
Bishwas Shrestha, … , Brian C. Betts, Marco L. Davila
Published May 21, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135754.
View: Text | PDF

Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease

  • Text
  • PDF
Abstract

Graft-versus-host disease (GVHD) remains an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). For decades, GVHD prophylaxis has included calcineurin-inhibitors, despite their incomplete efficacy and impairment of graft-versus-leukemia (GVL). Distinct from pharmacologic immune suppression, we have developed a novel, human CD83-targeted chimeric antigen receptor (CAR) T cell for GVHD prevention. CD83 is expressed on allo-activated, conventional CD4+ T cells (Tconv) and proinflammatory dendritic cells (DC); which are both implicated in GVHD pathogenesis. Human CD83 CAR T cells eradicate pathogenic CD83+ target cells, significantly increase the ratio of regulatory T cells (Treg) to allo-activated Tconv, and provide durable prevention of xenogeneic GVHD. CD83 CAR T cells are also capable of treating xenogeneic GVHD. We show human, acute myeloid leukemia (AML) expresses CD83 and myeloid leukemia cell lines are readily killed by CD83 CAR T cells. Human CD83 CAR T cells are a promising cell-based approach to prevent two critical complications of allo-HCT; GVHD and relapse. Thus, human CD83 CAR T cells warrant clinical investigation in GVHD prevention and treatment, as well as targeting CD83+ AML.

Authors

Bishwas Shrestha, Kelly Walton, Jordan Reff, Elizabeth M. Sagatys, Nhan Tu, Justin C. Boucher, Gongbo Li, Tayyeb Ghafoor, Martin Felices, Jeffrey Miller, Joseph Pidala, Bruce R. Blazar, Claudio Anasetti, Brian C. Betts, Marco L. Davila

×

Residual endotoxin induces primary graft dysfunction through ischemia-reperfusion-primed alveolar macrophages
Mahzad Akbarpour, … , G.R. Scott Budinger, Ankit Bharat
Mahzad Akbarpour, … , G.R. Scott Budinger, Ankit Bharat
Published May 19, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135838.
View: Text | PDF

Residual endotoxin induces primary graft dysfunction through ischemia-reperfusion-primed alveolar macrophages

  • Text
  • PDF
Abstract

Despite the widespread use of antibiotics, bacterial pneumonias in donors strongly predispose to the fatal syndrome of primary graft dysfunction (PGD) following lung transplantation. We report that bacterial endotoxin persists in human donor lungs after pathogen is cleared with antibiotics and is associated with neutrophil infiltration and PGD. In mouse models, depletion of tissue-resident alveolar macrophages (TRAM) attenuated neutrophil recruitment in response to endotoxin as shown by compartmental staining and intravital imaging. Bone marrow chimeric mice revealed that neutrophils were recruited by TRAM through activation of TLR4 in a MyD88-dependent manner. Intriguingly, low levels of endotoxin, insufficient to cause donor lung injury, promoted TRAM-dependent production of CXCL2, increased neutrophil recruitment, and led to PGD, which was independent of donor non-classical monocytes. Reactive oxygen species (ROS) increased in human donor lungs starting from the warm-ischemia phase and were associated with increased transcription and translocation to the plasma membrane of TLR4 in donor TRAM. Consistently, scavenging ROS or inhibiting their production to prevent TLR4 transcription/translocation or blockade of TLR4 or co-receptor CD14 on donor TRAM prevented neutrophil recruitment in response to endotoxin and ameliorated PGD. Our studies demonstrate that residual endotoxin after successful treatment of donor bacterial pneumonia promotes PGD through ischemia-reperfusion-primed donor TRAM..

Authors

Mahzad Akbarpour, Emilia Lecuona, Stephen Chiu, Qiang Wu, Melissa Querrey, Ramiro Fernandez, Felix Luis Nunez-Santana, Haiying Sun, Sowmya Ravi, Chitaru Kurihara, James M. Walter, Nikita Joshi, Ziyou Ren, Scott C. Roberts, Alan R. Hauser, Daniel Kreisel, Wenjun Li, Navdeep Chandel, Alexander V. Misharin, Thalachallour Mohanakumar, G.R. Scott Budinger, Ankit Bharat

×

Complement activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells
Catherine B. Xie, … , Dan Jane-wit, Jordan S. Pober
Catherine B. Xie, … , Dan Jane-wit, Jordan S. Pober
Published March 19, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135060.
View: Text | PDF

Complement activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells

  • Text
  • PDF
Abstract

Alloantibodies in pre-sensitized transplant candidates deposit complement membrane attack complexes (MAC) on graft endothelial cells (ECs), increasing risk of CD8+ T cell-mediated acute rejection. We recently showed (a) human ECs endocytose MAC into Rab5+ endosomes, creating a signaling platform that stabilizes NF-κB–inducing kinase (NIK) protein; (b) endosomal NIK activates both non-canonical NF-κB signaling to synthesize pro-IL-1β and an NLRP3 inflammasome to process and secrete active IL-1β; and (c) IL-1β activates ECs, increasing recruitment and activation of alloreactive effector memory CD4+ T (TEM) cells. Here, we report IFN-γ priming induced nuclear expression of IL-15/IL-15Rα complexes in cultured human ECs and that MAC-induced IL-1β stimulated translocation of IL-15/IL-15Rα complexes to the EC surface in a canonical NF-κB-dependent process, where IL-15/IL-15Rα transpresentation increased activation and maturation of alloreactive CD8+ TEM. Blocking NLRP3 inflammasome assembly, IL-1 receptor or IL-15 on ECs inhibited the augmented CD8+ TEM responses, indicating this pathway was not redundant. Adoptively transferred alloantibody and mouse complement deposition induced IL-15/IL-15Rα expression by human ECs lining human coronary artery grafts in immunodeficient mice and enhanced intimal CD8+ T cell infiltration, which was markedly reduced by inflammasome inhibition, linking alloantibody to acute rejection. Inhibiting MAC signaling may similarly limit other complement-mediated pathologies.

Authors

Catherine B. Xie, Bo Jiang, Lingfeng Qin, George Tellides, Nancy C. Kirkiles-Smith, Dan Jane-wit, Jordan S. Pober

×

Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury
Kojiro Nakamura, … , Elaine F. Reed, Jerzy W. Kupiec-Weglinski
Kojiro Nakamura, … , Elaine F. Reed, Jerzy W. Kupiec-Weglinski
Published February 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133142.
View: Text | PDF

Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury

  • Text
  • PDF
Abstract

Although CEACAM1 (CC1) glycoprotein resides at the interface of immune liver injury and metabolic homeostasis, its role in orthotopic liver transplantation (OLT) remains elusive. We aimed to determine whether/how CEACAM1 signaling may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. In the mouse, donor liver CC1 null mutation augmented IRI-OLT (CC1-KO>WT) by enhancing ROS expression and HMGB1 translocation during cold storage, data supported by in vitro studies where hepatic flush from CC1-deficient livers enhanced macrophage activation in BMDM cultures. Although hepatic CC1 deficiency augmented cold stress-triggered ASK1/p-p38 upregulation, adjunctive ASK1 inhibition alleviated IRI/improved OLT survival by suppressing p-p38 upregulation, ROS induction/HMGB1 translocation (CC1-KO>WT); while ASK1 silencing (siRNA) promoted cytoprotection in cold-stressed and damage-prone CC1-deficient hepatocyte cultures. Consistent with mouse data, CEACAM1 expression in sixty human donor liver biopsies correlated negatively with activation of ASK1/p-p38 axis; while low-CC1 levels associated with increased ROS/HMGB1 translocation, enhanced innate/adaptive immune responses and inferior early OLT function. Notably, reduced donor liver CEACAM1 expression was identified as one of independent predictors for EAD in human OLT patients. Thus, as a checkpoint regulator of IR-stress/sterile inflammation, CEACAM1 may be considered as a denominator of donor hepatic tissue quality, and a target for therapeutic modulation in OLT recipients.

Authors

Kojiro Nakamura, Shoichi Kageyama, Fady M. Kaldas, Hirofumi Hirao, Takahiro Ito, Kentaro Kadono, Kenneth J. Dery, Hidenobu Kojima, David W. Gjertson, Rebecca A. Sosa, Maciej Kujawski, Ronald W. Busuttil, Elaine F. Reed, Jerzy W. Kupiec-Weglinski

×
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • …
  • 14
  • 15
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts