Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Transplantation

  • 150 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 12
  • 13
  • 14
  • 15
  • Next →
IL-34 is a Treg-specific cytokine and mediates transplant tolerance
Séverine Bézie, Elodie Picarda, Jason Ossart, Laurent Tesson, Claire Usal, Karine Renaudin, Ignacio Anegon, Carole Guillonneau
Séverine Bézie, Elodie Picarda, Jason Ossart, Laurent Tesson, Claire Usal, Karine Renaudin, Ignacio Anegon, Carole Guillonneau
View: Text | PDF

IL-34 is a Treg-specific cytokine and mediates transplant tolerance

  • Text
  • PDF
Abstract

Cytokines and metabolic pathway–controlling enzymes regulate immune responses and have potential as powerful tools to mediate immune tolerance. Blockade of the interaction between CD40 and CD40L induces long-term cardiac allograft survival in rats through a CD8+CD45RClo Treg potentiation. Here, we have shown that the cytokine IL-34, the immunoregulatory properties of which have not been previously studied in transplantation or T cell biology, is expressed by rodent CD8+CD45RClo Tregs and human FOXP3+CD45RCloCD8+ and CD4+ Tregs. IL-34 was involved in the suppressive function of both CD8+ and CD4+ Tregs and markedly inhibited alloreactive immune responses. Additionally, in a rat cardiac allograft model, IL-34 potently induced transplant tolerance that was associated with a total inhibition of alloantibody production. Treatment of rats with IL-34 promoted allograft tolerance that was mediated by induction of CD8+ and CD4+ Tregs. Moreover, these Tregs were capable of serial tolerance induction through modulation of macrophages that migrate early to the graft. Finally, we demonstrated that human macrophages cultured in the presence of IL-34 greatly expanded CD8+ and CD4+ FOXP3+ Tregs, with a superior suppressive potential of antidonor immune responses compared with non–IL-34–expanded Tregs. In conclusion, we reveal that IL-34 serves as a suppressive Treg–specific cytokine and as a tolerogenic cytokine that efficiently inhibits alloreactive immune responses and mediates transplant tolerance.

Authors

Séverine Bézie, Elodie Picarda, Jason Ossart, Laurent Tesson, Claire Usal, Karine Renaudin, Ignacio Anegon, Carole Guillonneau

×

Outcomes of acute leukemia patients transplanted with naive T cell–depleted stem cell grafts
Marie Bleakley, Shelly Heimfeld, Keith R. Loeb, Lori A. Jones, Colette Chaney, Stuart Seropian, Ted A. Gooley, Franziska Sommermeyer, Stanley R. Riddell, Warren D. Shlomchik
Marie Bleakley, Shelly Heimfeld, Keith R. Loeb, Lori A. Jones, Colette Chaney, Stuart Seropian, Ted A. Gooley, Franziska Sommermeyer, Stanley R. Riddell, Warren D. Shlomchik
View: Text | PDF

Outcomes of acute leukemia patients transplanted with naive T cell–depleted stem cell grafts

  • Text
  • PDF
Abstract

BACKGROUND. Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HCT). In mice, naive T cells (TN) cause more severe GVHD than memory T cells (TM). We hypothesized that selective depletion of TN from human allogeneic peripheral blood stem cell (PBSC) grafts would reduce GVHD and provide sufficient numbers of hematopoietic stem cells and TM to permit hematopoietic engraftment and the transfer of pathogen-specific T cells from donor to recipient, respectively.

METHODS. In a single-arm clinical trial, we transplanted 35 patients with high-risk leukemia with TN-depleted PBSC grafts following conditioning with total body irradiation, thiotepa, and fludarabine. GVHD prophylactic management was with tacrolimus immunosuppression alone. Subjects received CD34-selected PBSCs and a defined dose of TM purged of CD45RA+ TN. Primary and secondary objectives included engraftment, acute and chronic GVHD, and immune reconstitution.

RESULTS. All recipients of TN-depleted PBSCs engrafted. The incidence of acute GVHD was not reduced; however, GVHD in these patients was universally corticosteroid responsive. Chronic GVHD was remarkably infrequent (9%; median follow-up 932 days) compared with historical rates of approximately 50% with T cell–replete grafts. TM in the graft resulted in rapid T cell recovery and transfer of protective virus-specific immunity. Excessive rates of infection or relapse did not occur and overall survival was 78% at 2 years.

CONCLUSION. Depletion of TN from stem cell allografts reduces the incidence of chronic GVHD, while preserving the transfer of functional T cell memory.

TRIAL REGISTRATION. ClinicalTrials.gov (NCT 00914940).

FUNDING. NIH, Burroughs Wellcome Fund, Leukemia and Lymphoma Society, Damon Runyon Cancer Research Foundation, and Richard Lumsden Foundation.

Authors

Marie Bleakley, Shelly Heimfeld, Keith R. Loeb, Lori A. Jones, Colette Chaney, Stuart Seropian, Ted A. Gooley, Franziska Sommermeyer, Stanley R. Riddell, Warren D. Shlomchik

×

Non-self recognition by monocytes initiates allograft rejection
Martin H. Oberbarnscheidt, Qiang Zeng, Qi Li, Hehua Dai, Amanda L. Williams, Warren D. Shlomchik, David M. Rothstein, Fadi G. Lakkis
Martin H. Oberbarnscheidt, Qiang Zeng, Qi Li, Hehua Dai, Amanda L. Williams, Warren D. Shlomchik, David M. Rothstein, Fadi G. Lakkis
View: Text | PDF

Non-self recognition by monocytes initiates allograft rejection

  • Text
  • PDF
Abstract

Maturation of T cell–activating APCs directly links innate and adaptive immunity and is typically triggered by microbial infection. Transplantation of allografts, which are sterile, generates strong T cell responses; however, it is unclear how grafts induce APC maturation in the absence of microbial-derived signals. A widely accepted hypothesis is that dying cells in the graft release “danger” molecules that induce APC maturation and initiate the adaptive alloimmune response. Here, we demonstrated that danger signals associated with dying cells are not sufficient to initiate alloimmunity, but that recognition of allogeneic non-self by the innate immune system is required. In WT as well as in T cell–, B cell–, and innate lymphoid cell–deficient mice, allogeneic grafts elicited persistent differentiation of monocytes into mature DCs that expressed IL-12 and stimulated T cell proliferation and IFN-γ production. In contrast, syngeneic grafts in the same mice elicited transient and less pronounced differentiation of monocytes into DCs, which neither expressed IL-12 nor stimulated IFN-γ production. In a model in which T cell recognition is restricted to a single foreign antigen on the graft, rejection occurred only if the allogeneic non-self signal was also sensed by the host’s innate immune system. These findings underscore the importance of innate recognition of allogeneic non-self by monocytes in initiating graft rejection.

Authors

Martin H. Oberbarnscheidt, Qiang Zeng, Qi Li, Hehua Dai, Amanda L. Williams, Warren D. Shlomchik, David M. Rothstein, Fadi G. Lakkis

×

CD40 ligation reverses T cell tolerance in acute myeloid leukemia
Long Zhang, Xiufen Chen, Xiao Liu, Douglas E. Kline, Ryan M. Teague, Thomas F. Gajewski, Justin Kline
Long Zhang, Xiufen Chen, Xiao Liu, Douglas E. Kline, Ryan M. Teague, Thomas F. Gajewski, Justin Kline
View: Text | PDF

CD40 ligation reverses T cell tolerance in acute myeloid leukemia

  • Text
  • PDF
Abstract

Spontaneous antigen-specific T cell responses can be generated in hosts harboring a variety of solid malignancies, but are subverted by immune evasion mechanisms active within the tumor microenvironment. In contrast to solid tumors, the mechanisms that regulate T cell activation versus tolerance to hematological malignancies have been underexplored. A murine acute myeloid leukemia (AML) model was used to investigate antigen-specific T cell responses against AML cells inoculated i.v. versus s.c. Robust antigen-specific T cell responses were generated against AML cells after s.c., but not i.v., inoculation. In fact, i.v. AML cell inoculation prevented functional T cell activation in response to subsequent s.c. AML cell challenge. T cell dysfunction was antigen specific and did not depend on Tregs or myeloid-derived suppressor cells (MDSCs). Antigen-specific TCR-Tg CD8+ T cells proliferated, but failed to accumulate, and expressed low levels of effector cytokines in hosts after i.v. AML induction, consistent with abortive T cell activation and peripheral tolerance. Administration of agonistic anti-CD40 Ab to activate host APCs enhanced accumulation of functional T cells and prolonged survival. Our results suggest that antigen-specific T cell tolerance is a potent immune evasion mechanism in hosts with AML that can be reversed in vivo after CD40 engagement.

Authors

Long Zhang, Xiufen Chen, Xiao Liu, Douglas E. Kline, Ryan M. Teague, Thomas F. Gajewski, Justin Kline

×

Haptoglobin activates innate immunity to enhance acute transplant rejection in mice
Hua Shen, Yang Song, Christopher M. Colangelo, Terence Wu, Can Bruce, Gaia Scabia, Anjela Galan, Margherita Maffei, Daniel R. Goldstein
Hua Shen, Yang Song, Christopher M. Colangelo, Terence Wu, Can Bruce, Gaia Scabia, Anjela Galan, Margherita Maffei, Daniel R. Goldstein
View: Text | PDF

Haptoglobin activates innate immunity to enhance acute transplant rejection in mice

  • Text
  • PDF
Abstract

Immune tolerance to transplanted organs is impaired when the innate immune system is activated in response to the tissue necrosis that occurs during harvesting and implantation procedures. A key molecule in this immune pathway is the intracellular TLR signal adaptor known as myeloid differentiation primary response gene 88 (MyD88). After transplantation, MyD88 induces DC maturation as well as the production of inflammatory mediators, such as IL-6 and TNF-α. However, upstream activators of MyD88 function in response to transplantation have not been identified. Here, we show that haptoglobin, an acute phase protein, is an initiator of this MyD88-dependent inflammatory process in a mouse model of skin transplantation. Necrotic lysates from transplanted skin elicited higher inflammatory responses in DCs than did nontransplanted lysates, suggesting DC-mediated responses are triggered by factors released during transplantation. Analysis of transplanted lysates identified haptoglobin as one of the proteins upregulated during transplantation. Expression of donor haptoglobin enhanced the onset of acute skin transplant rejection, whereas haptoglobin-deficient skin grafts showed delayed acute rejection and antidonor T cell priming in a MyD88-dependent graft rejection model. Thus, our results show that haptoglobin release following skin necrosis contributes to accelerated transplant rejection, with potential implications for the development of localized immunosuppressive therapies.

Authors

Hua Shen, Yang Song, Christopher M. Colangelo, Terence Wu, Can Bruce, Gaia Scabia, Anjela Galan, Margherita Maffei, Daniel R. Goldstein

×

Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation
Felix Bohne, Marc Martínez-Llordella, Juan-José Lozano, Rosa Miquel, Carlos Benítez, María-Carlota Londoño, Tommaso-María Manzia, Roberta Angelico, Dorine W. Swinkels, Harold Tjalsma, Marta López, Juan G. Abraldes, Eliano Bonaccorsi-Riani, Elmar Jaeckel, Richard Taubert, Jacques Pirenne, Antoni Rimola, Giuseppe Tisone, Alberto Sánchez-Fueyo
Felix Bohne, Marc Martínez-Llordella, Juan-José Lozano, Rosa Miquel, Carlos Benítez, María-Carlota Londoño, Tommaso-María Manzia, Roberta Angelico, Dorine W. Swinkels, Harold Tjalsma, Marta López, Juan G. Abraldes, Eliano Bonaccorsi-Riani, Elmar Jaeckel, Richard Taubert, Jacques Pirenne, Antoni Rimola, Giuseppe Tisone, Alberto Sánchez-Fueyo
View: Text | PDF

Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation

  • Text
  • PDF
Abstract

Following organ transplantation, lifelong immunosuppressive therapy is required to prevent the host immune system from destroying the allograft. This can cause severe side effects and increased recipient morbidity and mortality. Complete cessation of immunosuppressive drugs has been successfully accomplished in selected transplant recipients, providing proof of principle that operational allograft tolerance is attainable in clinical transplantation. The intra-graft molecular pathways associated with successful drug withdrawal, however, are not well defined. In this study, we analyzed sequential blood and liver tissue samples collected from liver transplant recipients enrolled in a prospective multicenter immunosuppressive drug withdrawal clinical trial. Before initiation of drug withdrawal, operationally tolerant and non-tolerant recipients differed in the intra-graft expression of genes involved in the regulation of iron homeostasis. Furthermore, as compared with non-tolerant recipients, operationally tolerant patients exhibited higher serum levels of hepcidin and ferritin and increased hepatocyte iron deposition. Finally, liver tissue gene expression measurements accurately predicted the outcome of immunosuppressive withdrawal in an independent set of patients. These results point to a critical role for iron metabolism in the regulation of intra-graft alloimmune responses in humans and provide a set of biomarkers to conduct drug-weaning trials in liver transplantation.

Authors

Felix Bohne, Marc Martínez-Llordella, Juan-José Lozano, Rosa Miquel, Carlos Benítez, María-Carlota Londoño, Tommaso-María Manzia, Roberta Angelico, Dorine W. Swinkels, Harold Tjalsma, Marta López, Juan G. Abraldes, Eliano Bonaccorsi-Riani, Elmar Jaeckel, Richard Taubert, Jacques Pirenne, Antoni Rimola, Giuseppe Tisone, Alberto Sánchez-Fueyo

×

Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation
Masato Fujioka, Hisashi Tokano, Keiko Shiina Fujioka, Hideyuki Okano, Albert S.B. Edge
Masato Fujioka, Hisashi Tokano, Keiko Shiina Fujioka, Hideyuki Okano, Albert S.B. Edge
View: Text | PDF

Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation

  • Text
  • PDF
Abstract

Most degenerative diseases begin with a gradual loss of specific cell types before reaching a threshold for symptomatic onset. However, the endogenous regenerative capacities of different tissues are difficult to study, because of the limitations of models for early stages of cell loss. Therefore, we generated a transgenic mouse line (Mos-iCsp3) in which a lox-mismatched Cre/lox cassette can be activated to produce a drug-regulated dimerizable caspase-3. Tissue-restricted Cre expression yielded stochastic Casp3 expression, randomly ablating a subset of specific cell types in a defined domain. The limited and mosaic cell loss led to distinct responses in 3 different tissues targeted using respective Cre mice: reversible, impaired glucose tolerance with normoglycemia in pancreatic β cells; wound healing and irreversible hair loss in the skin; and permanent moderate deafness due to the loss of auditory hair cells in the inner ear. These mice will be important for assessing the repair capacities of tissues and the potential effectiveness of new regenerative therapies.

Authors

Masato Fujioka, Hisashi Tokano, Keiko Shiina Fujioka, Hideyuki Okano, Albert S.B. Edge

×

Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice
Amar Nijagal, Marta Wegorzewska, Erin Jarvis, Tom Le, Qizhi Tang, Tippi C. MacKenzie
Amar Nijagal, Marta Wegorzewska, Erin Jarvis, Tom Le, Qizhi Tang, Tippi C. MacKenzie
View: Text | PDF

Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice

  • Text
  • PDF
Abstract

Transplantation of allogeneic stem cells into the early gestational fetus, a treatment termed in utero hematopoietic cell transplantation (IUHCTx), could potentially overcome the limitations of bone marrow transplants, including graft rejection and the chronic immunosuppression required to prevent rejection. However, clinical use of IUHCTx has been hampered by poor engraftment, possibly due to a host immune response against the graft. Since the fetal immune system is relatively immature, we hypothesized that maternal cells trafficking into the fetus may pose the true barrier to effective IUHCTx. Here, we have demonstrated that there is macrochimerism of maternal leukocytes in the blood of unmanipulated mouse fetuses, with substantial increases in T cell trafficking after IUHCTx. To determine the contribution of these maternal lymphocytes to rejection after IUHCTx, we bred T and/or B cell–deficient mothers to wild-type fathers and performed allogeneic IUHCTx into the immunocompetent fetuses. There was a marked improvement in engraftment if the mother lacked T cells but not B cells, indicating that maternal T cells are the main barrier to engraftment. Furthermore, when the graft was matched to the mother, there was no difference in engraftment between syngeneic and allogeneic fetal recipients. Our study suggests that the clinical success of IUHCTx may be improved by transplanting cells matched to the mother.

Authors

Amar Nijagal, Marta Wegorzewska, Erin Jarvis, Tom Le, Qizhi Tang, Tippi C. MacKenzie

×

LFA-1–specific therapy prolongs allograft survival in rhesus macaques
Idelberto R. Badell, Maria C. Russell, Peter W. Thompson, Alexandra P. Turner, Tim A. Weaver, Jennifer M. Robertson, Jose G. Avila, Jose A. Cano, Brandi E. Johnson, Mingqing Song, Frank V. Leopardi, Sarah Swygert, Elizabeth A. Strobert, Mandy L. Ford, Allan D. Kirk, Christian P. Larsen
Idelberto R. Badell, Maria C. Russell, Peter W. Thompson, Alexandra P. Turner, Tim A. Weaver, Jennifer M. Robertson, Jose G. Avila, Jose A. Cano, Brandi E. Johnson, Mingqing Song, Frank V. Leopardi, Sarah Swygert, Elizabeth A. Strobert, Mandy L. Ford, Allan D. Kirk, Christian P. Larsen
View: Text | PDF

LFA-1–specific therapy prolongs allograft survival in rhesus macaques

  • Text
  • PDF
Abstract

Outcomes in transplantation have been limited by suboptimal long-term graft survival and toxicities associated with current immunosuppressive approaches. T cell costimulation blockade has shown promise as an alternative strategy to avoid the side effects of conventional immunosuppressive therapies, but targeting CD28-mediated costimulation alone has proven insufficient to prevent graft rejection in primates. Donor-specific memory T (TM) cells have been implicated in costimulation blockade–resistant transplant rejection, due to their enhanced effector function and decreased reliance on costimulatory signaling. Thus, we have tested a potential strategy to overcome TM cell–driven rejection by targeting molecules preferentially expressed on these cells, such as the adhesion molecule lymphocyte function–associated antigen 1 (LFA-1). Here, we show that short-term treatment (i.e., induction therapy) with the LFA-1–specific antibody TS-1/22 in combination with either basiliximab (an IL-2Rα–specific mAb) and sirolimus (a mammalian target of rapamycin inhibitor) or belatacept (a high-affinity variant of the CD28 costimulation–blocker CTLA4Ig) prolonged islet allograft survival in nonhuman primates relative to control treatments. Moreover, TS-1/22 masked LFA-1 on TM cells in vivo and inhibited the generation of alloproliferative and cytokine-producing effector T cells that expressed high levels of LFA-1 in vitro. These results support the use of LFA-1–specific induction therapy to neutralize costimulation blockade–resistant populations of T cells and further evaluation of LFA-1–specific therapeutics for use in transplantation.

Authors

Idelberto R. Badell, Maria C. Russell, Peter W. Thompson, Alexandra P. Turner, Tim A. Weaver, Jennifer M. Robertson, Jose G. Avila, Jose A. Cano, Brandi E. Johnson, Mingqing Song, Frank V. Leopardi, Sarah Swygert, Elizabeth A. Strobert, Mandy L. Ford, Allan D. Kirk, Christian P. Larsen

×

Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice
Filip K. Swirski, Moritz Wildgruber, Takuya Ueno, Jose-Luiz Figueiredo, Peter Panizzi, Yoshiko Iwamoto, Elizabeth Zhang, James R. Stone, Elisenda Rodriguez, John W. Chen, Mikael J. Pittet, Ralph Weissleder, Matthias Nahrendorf
Filip K. Swirski, Moritz Wildgruber, Takuya Ueno, Jose-Luiz Figueiredo, Peter Panizzi, Yoshiko Iwamoto, Elizabeth Zhang, James R. Stone, Elisenda Rodriguez, John W. Chen, Mikael J. Pittet, Ralph Weissleder, Matthias Nahrendorf
View: Text | PDF

Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice

  • Text
  • PDF
Abstract

Rates of graft rejection are high among recipients of heart transplants. The onset and progression of clinically significant heart transplant rejection are currently monitored by serial biopsy, but this approach is highly invasive and lacks sensitivity. Here, we have developed what we believe to be a new technique to measure organ rejection noninvasively that involves the exploration of tissue-infiltrating leukocytes as biomarker sources for diagnostic imaging. Specifically, we profiled the myeloid response in a murine model of heart transplantation with the aim of defining and validating an imaging signature of graft rejection. Ly-6Chi monocytes, which promote inflammation, accumulated progressively in allografts but only transiently in isografts. Ly-6Clo monocytes, which help resolve inflammation, did not accumulate, although they composed the majority of the few remaining monocytes in isografts. The persistence of Ly-6Chi monocytes in allografts prompted us to screen for a Ly-6Chi monocyte–associated imaging marker. Low-density array data revealed that Ly-6Chi monocytes express 10-fold higher levels of myeloperoxidase (MPO) than Ly-6Clo monocytes. Noninvasive magnetic resonance imaging of MPO with an MPO-activatable Gd-chelate revealed a spatially defined T1-weighted signal in rejected allografts but not in isografts or MPO-deficient allograft recipients. Flow cytometry, enzymography, and histology validated the approach by mapping MPO activity to Ly-6Chi monocytes and neutrophils. Thus, MPO imaging represents a potential alternative to the current invasive clinical standard by which transplants are monitored.

Authors

Filip K. Swirski, Moritz Wildgruber, Takuya Ueno, Jose-Luiz Figueiredo, Peter Panizzi, Yoshiko Iwamoto, Elizabeth Zhang, James R. Stone, Elisenda Rodriguez, John W. Chen, Mikael J. Pittet, Ralph Weissleder, Matthias Nahrendorf

×
  • ← Previous
  • 1
  • 2
  • …
  • 12
  • 13
  • 14
  • 15
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts