Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) that begins in the first year of life. While most cases of DS are caused by variants in SCN1A, variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are also linked to DS or to the more severe early infantile DEE. Both disorders fall under the OMIM term DEE52. Scn1b null mice model DEE52, with spontaneous generalized seizures and death in 100% of animals in the third postnatal week. Scn1b null cortical parvalbumin-positive interneurons and pyramidal neurons are hypoexcitable. The goal of this study was to develop a proof-of-principle gene replacement strategy for DEE52. We tested an adeno-associated viral vector encoding β1 subunit cDNA (AAV-Navβ1) in Scn1b null mice. We demonstrated that AAV-Navβ1 drives β1 protein expression in excitatory and inhibitory neurons in mouse brain. Bilateral intracerebroventricular administration of AAV-Navβ1 in Scn1b null mice at postnatal day (P) 2, but not at P10, reduced spontaneous seizure severity and duration, prolonged life span, prevented hyperthermia-induced seizures, and restored cortical neuron excitability. AAV-Navβ1 administration to WT mice resulted in β1 overexpression in brain but no obvious adverse effects. This work lays the foundation for future development of a gene therapeutic strategy for SCN1B-linked DEE patients.
Chunling Chen, Yukun Yuan, Heather A. O'Malley, Robert Duba-Kiss, Yan Chen, Karl Habig, Yosuke Niibori, Samantha L. Hodges, David R. Hampson, Lori L. Isom
The Hippo signaling pathway plays a key role in tumorigenesis in different cancer types. We investigated the role of the Hippo “effector” YAP1 on the tumor immune microenvironment (TIME) of urothelial carcinoma of bladder (UCB) and evaluated the efficacy of immunotherapy in the context of YAP1 signaling. We performed numerous in vitro and in vivo experiments to determine the role of YAP1 using genetic and pharmacological attenuation of YAP1 activity. Briefly, RNA sequencing was carried out with mice and human cell lines to identify novel YAP1-regulated downstream targets unbiasedly. We then experimentally confirmed that YAP1 regulates the TIME through the IL-6/STAT3 signaling pathway and varied C-X-C motif chemokine regulation. We analyzed several human sample sets to explore the TIME status in the context of YAP1 expression. Our data indicate that YAP1 attenuation decreases M2 macrophages and MDSCs in the TIME compared to YAP1 expressing cells. In summary, this study provides insights on YAP1 signaling as a driver for cancer stemness and an inducer of immunosuppressive TIME. Moreover, the therapeutic efficacy of YAP1 attenuation indicates that combined blockade of YAP1 and immune checkpoints may yield clinical value for treating UCB patients.
Pritam Sadhukhan, Mingxiao Feng, Emily J. Illingworth, Ido Sloma, Akira Ooki, Andres Matoso, David Sidransky, Burles A. Johnson 3rd, Luigi Marchionni, Fenna C.M. Sillé, Woonyoung Choi, David J. McConkey, Mohammad Obaidul Hoque
The SLC6A1 gene encodes the gamma-aminobutyric acid (GABA) transporter GAT-1, the deficiency of which is associated with infantile encephalopathy with intellectual disability. We designed two AAV9 vectors, with either the JeT or MeP promoter, and conducted preclinical gene therapy studies using heterozygous and homozygous Slc6a1 KO mice at different developmental ages and various routes of administration. Neonatal intracerebroventricular administration of either vector resulted in significantly normalized EEG patterns in Slc6a1-/- or Slc6a1+/- mice, as well as improvement in several behavioral phenotypes of Slc6a1-/- mice. However, some mortality and adverse effects were observed in neonatal-treated mice. Intrathecal administration of either vector at postnatal day (PND) 5 normalized EEG patterns in Slc6a1+/- mice, but in Slc6a1-/- mice the treatment only rescued nest building without impact on EEG. Both vectors were well-tolerated in all mice treated at PND5 or later (including WT mice), up to 1 year post-injection. Overall, our data demonstrate compelling efficacy when mice are treated at an early development age. We also identified that outside of the neonatal treatment window, the severe homozygous KO model is more refractory to treatment, whereas our treatments in the heterozygous mice, which genotypically match human patients, have resulted in stronger benefits.
Weirui Guo, Matthew Rioux, Frances Shaffo, Yuhui Hu, Ze Yu, Chao Xing, Steven J. Gray
Liposomal drug delivery systems have revolutionized traditional cytotoxic drugs. However, the relative instability and toxicity of the existing liposomal drug delivery systems compromised their efficacy. Herein, we present Rg3-lipo, an innovative drug delivery system using a glycosyl moiety–enriched ginsenoside (Rg3). This system is distinguished by its glycosyl moieties exposed on the liposomal surface. These moieties imitate human cell membranes to stabilize and evade phagocytic clearance. The Rg3-lipo system loaded with paclitaxel (PTX-Rg3-lipo) demonstrated favorable bioavailability and safety in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys. With its glycosyl moieties recognizing tumor cells via the glucose transporter Glut1, PTX-Rg3-lipo inhibited gastric, breast, and esophageal cancers in human cancer cell lines, tumor-bearing mice, and patient-derived xenograft models. These glycosyl moieties selectively targeted myeloid-derived suppressor cells (MDSCs) through the glucose transporter Glut3 to attenuate their immunosuppressive effect. The mechanism study revealed that Rg3-lipo suppressed glycolysis and downregulated the transcription factors c-Maf and Mafb overcoming the MDSC-mediated immunosuppressive microenvironment and enhancing PTX-Rg3-lipo’s antitumor effect. Taken together, we supply substantial evidence for its advantageous bioavailability and safety in multiple animal models, including nonhuman primates, and Rg3-lipo’s dual targeting of cancer cells and MDSCs. Further investigation regarding Rg3-lipo’s druggability will be conducted in clinical trials.
Yuru Shen, Bin Zhong, Wanwei Zheng, Dan Wang, Lin Chen, Huan Song, Xuanxuan Pan, Shaocong Mo, Bryan Jin, Haoshu Cui, Huaxing Zhan, Feifei Luo, Jie Liu
Cancer patients undergoing chemotherapy often experience anorexia and weight loss that substantially deteriorates overall health, reduces treatment tolerance and quality of life, and worsens oncologic outcomes. There are currently few effective therapeutic options to mitigate these side effects. The central melanocortin system, which plays a pivotal role in regulating appetite and energy homeostasis, presents a logical target for treating anorexia and weight loss. In this preclinical study, we evaluated the efficacy of TCMCB07, a synthetic antagonist of the melanocortin-4 receptor, in mitigating anorexia and weight loss in several rat models of chemotherapy: cisplatin, 5-fluorouracil, cyclophosphamide, vincristine, doxorubicin, and a combination of irinotecan and 5-fluorouracil. Our results indicate that peripheral administration of TCMCB07 improved appetite, stabilized body weight, preserved fat and heart mass, and slightly protected lean mass after multiple cycles of chemotherapy. Furthermore, combining TCMCB07 with a growth differentiation factor 15 antibody enhanced treatment effectiveness. Similar effects from TCMCB07 treatment were observed in a rat tumor model following combination chemotherapy. No notable adverse effects nor increased chemotherapy-related toxicities were observed with TCMCB07 treatment. These findings suggest that peripheral administration of TCMCB07 holds promise as a therapeutic approach for alleviating chemotherapy-induced anorexia and weight loss, potentially benefiting numerous patients undergoing chemotherapy.
Xinxia Zhu, Russell Potterfield, Kenneth A. Gruber, Emma Zhang, Samuel D. Newton, Mason A. Norgard, Peter R Levasseur, Peng Bai, Xu Chen, Qingyang Gu, Aaron J. Grossberg, Daniel L. Marks
The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify histone deacetylase 8 (HDAC8) as a drug target whose inactivation synergizes with the inhibition of checkpoint kinases to elicit substantial replication stress and compromise genome integrity selectively in cancer cells. We showed that simultaneous inhibition of HDAC8 and checkpoint kinases led to extensive replication fork collapse, irreversible cell-cycle arrest, and synergistic vulnerability in various cancer cells. The efficacy of the combination treatment was further validated in patient tumor-derived organoid (PDO) and xenograft mouse (PDX) models, providing important insights into patient-specific drug responses. Our data revealed that HDAC8 activity was essential for reducing the acetylation level of structural maintenance of chromosomes protein 3 (SMC3) ahead of replication forks and preventing R loop formation. HDAC8 inactivation resulted in slowed fork progression and checkpoint kinase activation. Our findings indicate that HDAC8 guards the integrity of the replicating genome, and the cancer-specific synthetic lethality between HDAC8 and checkpoint kinases provides a promising replication stress-targeting strategy for treating a broad range of cancers.
Ting-Yu Chang, Yan Yan, Zih-Yao Yu, Moeez Rathore, Nian-Zhe Lee, Hui-Ju Tseng, Li-Hsin Cheng, Wei-Jan Huang, Wei Zhang, Ernest R. Chan, Yulan Qing, Ming-Lun Kang, Rui Wang, Kelvin K. Tsai, John J. Pink, William E. Harte, Stanton L. Gerson, Sung-Bau Lee
BRAFV600E-mutant metastatic colorectal cancer (mCRC) is associated with poor prognosis. The combination of anti-BRAF/EGFR (encorafenib/cetuximab) treatment for patients with BRAFV600E-mutant mCRC improved clinical benefits; unfortunately, inevitable acquired resistance limits the treatment outcome, and the mechanism has not been validated. Here, we discovered that monoacylglycerol O-Acyltransferase 3 (MOGAT3) mediated diacylglycerol (DAG) accumulation contributed to acquired resistance to encorafenib/cetuximab by dissecting BRAFV600E-mutant mCRC patient-derived xenograft (PDX) model exposed to encorafenib/cetuximab administration. Mechanistically, upregulated MOGAT3 promotes DAG synthesis and reduces fatty acid oxidation (FAO)-promoting DAG accumulation and activating PKCα-CRAF-MEK-ERK, driving acquired resistance. Resistance-induced hypoxia promotes MOGAT3 transcriptional elevation; simultaneously, MOGAT3-mediated DAG accumulation increases HIF1A expression in translation level through PKCα-CRAF-eIF4E activation, strengthening the resistance status. Intriguingly, reducing intratumoral DAG by fenofibrate or Pf-06471553 restores the antitumor efficacy of encorafenib/cetuximab on resistant BRAFV600E-mutant mCRC, interrupted PKCα-CRAF-MEK-ERK signaling. These findings reveal the critical metabolite DAG as a modulator of encorafenib/cetuximab efficacy in BRAFV600E-mutant mCRC, suggesting that fenofibrate may prove beneficial for resistant BRAFV600E-mutant mCRC patients.
Jiawei Wang, Huogang Wang, Wei Zhou, Xin Luo, Huijuan Wang, Qing Meng, Jiaxin Chen, Xiaoyu Chen, Yinqiang Liu, David W. Chan, Zhenyu Ju, Zhangfa Song
Lorenza Bellusci, Hana Golding, Surender Khurana
The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that reside in the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.
Hanae Lahlou, Hong Zhu, Wu Zhou, Albert S.B. Edge
Effective psychotherapy of post-traumatic stress disorder (PTSD) remains challenging due to the fragile nature of fear extinction, for which ventral hippocampal CA1 (vCA1) region is considered as a central hub. However, neither the core pathway nor the cellular mechanisms involved in implementing extinction are known. Here, we unveil a direct pathway, where layer 2a fan cells in the lateral entorhinal cortex (LEC) target parvalbumin-expressing interneurons (PV-INs) in the vCA1 region to propel low gamma-band synchronization of the LEC-vCA1 activity during extinction learning. Bidirectional manipulations of either hippocampal PV-INs or LEC fan cells sufficed fear extinction. Gamma entrainment of vCA1 by deep brain stimulation (DBS) or noninvasive transcranial alternating current stimulation (tACS) of LEC persistently enhanced the PV-IN activity in vCA1, thereby promoting fear extinction. These results demonstrate that the LEC-vCA1 pathway forms a top-down motif to empower low gamma-band oscillations that facilitate fear extinction. Finally, application of low gamma DBS and tACS to a mouse model with persistent PTSD showed potent efficacy, suggesting that the dedicated LEC-vCA1 pathway can be stimulated for therapy to remove traumatic memory trace.
Ze-Jie Lin, Xue Gu, Wan-Kun Gong, Mo Wang, Yan-Jiao Wu, Qi Wang, Xin-Rong Wu, Xin-Yu Zhao, Michael X. Zhu, Lu-Yang Wang, Quanying Liu, Ti-Fei Yuan, Wei-Guang Li, Tian-Le Xu
No posts were found with this tag.