Understanding cell fate regulation in the liver is necessary to advance cell therapies for hepatic disease. Liver progenitor cells (LPC) contribute to tissue regeneration after severe hepatic injury yet signals instructing progenitor cell dynamics and fate are largely unknown. The Tissue Inhibitor of Metalloproteinases, TIMP1 and TIMP3 control the sheddases ADAM10 and ADAM17, key for NOTCH activation. Here we uncover the role of the TIMP/ADAM/NOTCH/DLK1 axis in LPC maintenance and cholangiocyte specification. Combined TIMP1/TIMP3 loss in vivo caused abnormal portal triad stoichiometry accompanied by collagen deposits, dysregulated Notch signalling and increased soluble DLK1. The MIC1-1C3+CD133+CD26– biliary progenitor population was reduced following acute CCl4 or chronic DDC liver injury and in aged TIMP deficient livers. ScRNA-seq data interrogation and RNAscope identified portal mesenchymal cells co-expressing ADAM17/DLK1 as enzymatically equipped to process DLK1 and direct LPC differentiation. Specifically, TIMP deficient biliary fragment-derived organoids displayed increased propensity for cholangiocyte differentiation. ADAM17 inhibition reduced Sox9-mediated cholangiocyte differentiation, prolonging organoid growth and survival, whereas soluble DLK1-treated WT organoids triggered Sox9 expression and cholangiocyte specification in mouse and patient-derived liver organoids. Thus, metalloprotease inhibitors regulate instructive signals for biliary cell differentiation and LPC preservation within the portal niche, providing a new basis for cell therapy strategies.
Virginie Defamie, Kazeera Aliar, Soumili Sarkar, Foram Vyas, Ronak Shetty, Swami Reddy Narala, Hui Fang, Sanjay Saw, Pirashaanthy Tharmapalan, Otto Sanchez, Jennifer J. Knox, Paul D. Waterhouse, Rama Khokha
Skeletal muscle relies on resident muscle stem cells (MuSCs) for growth and repair. Aging and muscle diseases impair MuSC function, leading to stem cell exhaustion and regenerative decline that contribute to the progressive loss of skeletal muscle mass and strength. In the absence of clinically available nutritional solutions specifically targeting MuSCs, we used a human myogenic progenitor (hMP) high-content imaging screen of natural molecules from food to identify nicotinamide (NAM) and pyridoxine (PN) as bioactive nutrients that stimulate MuSCs and have history of safe human use. NAM and PN synergize via CK1-mediated cytoplasmic β-catenin activation and AKT signaling to promote amplification and differentiation of MuSCs. Oral treatment with a combination of NAM/PN accelerates muscle regeneration in vivo by stimulating MuSCs, increases muscle strength during recovery, and overcomes MuSC dysfunction and regenerative failure during aging. Levels of NAM and bioactive PN spontaneously decline during aging in model organisms and inter-independently associate with muscle mass and walking speed in a human cohort of 186 aged people. Collectively, our results establish NAM/PN as a new nutritional intervention that stimulates MuSCs, enhances muscle regeneration, and alleviates age-related muscle decline with a direct opportunity for clinical translation.
Sara Ancel, Joris Michaud, Eugenia Migliavacca, Charline Jomard, Aurélie Fessard, Pauline Garcia, Sonia Karaz, Sruthi Raja, Guillaume E. Jacot, Thibaut Desgeorges, José-Luis Sánchez-García, Loic Tauzin, Yann Ratinaud, Benjamin Brinon, Sylviane Métairon, Lucas Pinero, Denis Barron, Stephanie Blum, Leonidas G. Karagounis, Ramin Heshmat, Afshin Ostovar, Farshad Farzadfar, Isabella Scionti, Rémi Mounier, Julien Gondin, Pascal Stuelsatz, Jerome N. Feige
Epidermal stem cells control homeostasis and regeneration of skin and hair. In the hair follicle (HF) bulge of mammals, populations of slow-cycling stem cells regenerate the HF during cyclical rounds of anagen (growth), telogen (quiescence), and catagen (regression). Multipotent epidermal cells are also present in the HF above the bulge area, contributing to the formation and maintenance of sebaceous gland and upper and middle portions of the HF. Here, we report that the transcription factor Krox20 is enriched in an epidermal stem cell population located in the upper/ middle HF. Expression analyses and lineage tracing using inducible Krox20-CreERT showed that Krox20-lineage cells migrate out of this HF region and contribute to the formation of bulge in the HF, serving as ancestors of bulge stem cells. In vivo depletion of these cells arrests HF morphogenesis. This study identifies a novel marker for an epidermal stem cell population that is indispensable for hair homeostasis.
Elnaz Ghotbi, Edem Tchegnon, Zhiguo Chen, Stephen Li, Tracey Shipman, Yong Wang, Jenny Raman, Yumeng Zhang, Renee M. McKay, Chung-Ping Liao, Lu Q. Le
Maintaining protein homeostasis (proteostasis) requires precise control of protein folding and degradation. Failure to properly respond to stresses disrupts proteostasis, which is a hallmark of many diseases, including cataracts. Hibernators are natural cold-stress adaptors; however, little is known about how they keep a balanced proteome under conditions of drastic temperature shift. Intriguingly, we identified a reversible lens opacity phenotype in ground squirrels (GSs) associated with their hibernation-rewarming process. To understand this “cataract-reversing” phenomenon, we first established induced lens epithelial cells differentiated from GS-derived induced pluripotent stem cells, which helped us explore the molecular mechanism preventing the accumulation of protein aggregates in GS lenses. We discovered that the ubiquitin-proteasome system (UPS) played a vital role in minimizing the aggregation of the lens protein αA-crystallin (CRYAA) during rewarming. Such function was, for the first time to our knowledge, associated with an E3 ubiquitin ligase, RNF114, which appears to be one of the key mechanisms mediating the turnover and homeostasis of lens proteins. Leveraging this knowledge gained from hibernators, we engineered a deliverable RNF114 complex and successfully reduced lens opacity in rats with cold-induced cataracts and zebrafish with oxidative stress–related cataracts. These data provide new insights into the critical role of the UPS in maintaining proteostasis in cold and possibly other forms of stresses. The newly identified E3 ubiquitin ligase RNF114, related to CRYAA, offers a promising avenue for treating cataracts with protein aggregates.
Hao Yang, Xiyuan Ping, Jiayue Zhou, Hailaiti Ailifeire, Jing Wu, Francisco M. Nadal-Nicolás, Kiyoharu J. Miyagishima, Jing Bao, Yuxin Huang, Yilei Cui, Xin Xing, Shiqiang Wang, Ke Yao, Wei Li, Xingchao Shentu
Copy number variation (CNV) at 7q11.23 causes Williams-Beuren syndrome (WBS) and 7q microduplication syndrome (7Dup), neurodevelopmental disorders (NDDs) featuring intellectual disability accompanied by symmetrically opposite neurocognitive features. Although significant progress has been made in understanding the molecular mechanisms underlying 7q11.23-related pathophysiology, the propagation of CNV dosage across gene expression layers and their interplay remains elusive. Here we uncovered 7q11.23 dosage–dependent symmetrically opposite dynamics in neuronal differentiation and intrinsic excitability. By integrating transcriptomics, translatomics, and proteomics of patient-derived and isogenic induced neurons, we found that genes related to neuronal transmission follow 7q11.23 dosage and are transcriptionally controlled, while translational factors and ribosomal genes are posttranscriptionally buffered. Consistently, we found phosphorylated RPS6 (p-RPS6) downregulated in WBS and upregulated in 7Dup. Surprisingly, p-4EBP was changed in the opposite direction, reflecting dosage-specific changes in total 4EBP levels. This highlights different dosage-sensitive dyregulations of the mTOR pathway as well as distinct roles of p-RPS6 and p-4EBP during neurogenesis. Our work demonstrates the importance of multiscale disease modeling across molecular and functional layers, uncovers the pathophysiological relevance of ribosomal biogenesis in a paradigmatic pair of NDDs, and uncouples the roles of p-RPS6 and p-4EBP as mechanistically actionable relays in NDDs.
Marija Mihailovich, Pierre-Luc Germain, Reinald Shyti, Davide Pozzi, Roberta Noberini, Yansheng Liu, Davide Aprile, Erika Tenderini, Flavia Troglio, Sebastiano Trattaro, Sonia Fabris, Ummi Ciptasari, Marco Tullio Rigoli, Nicolò Caporale, Giuseppe D’Agostino, Filippo Mirabella, Alessandro Vitriolo, Daniele Capocefalo, Adrianos Skaros, Agnese Virginia Franchini, Sara Ricciardi, Ida Biunno, Antonino Neri, Nael Nadif Kasri, Tiziana Bonaldi, Rudolf Aebersold, Michela Matteoli, Giuseppe Testa
Activating mutations of FLT3 contribute to deregulated hematopoietic stem and progenitor cell (HSC/Ps) growth and survival in patients with acute myeloid leukemia (AML), leading to poor overall survival. AML patients treated with investigational drugs targeting mutant FLT3, including Quizartinib and Crenolanib, develop resistance to these drugs. Development of resistance is largely due to acquisition of cooccurring mutations and activation of additional survival pathways, as well as emergence of additional FLT3 mutations. Despite the high prevalence of FLT3 mutations and their clinical significance in AML, there are few targeted therapeutic options available. We have identified 2 novel nicotinamide-based FLT3 inhibitors (HSN608 and HSN748) that target FLT3 mutations at subnanomolar concentrations and are potently effective against drug-resistant secondary mutations of FLT3. These compounds show antileukemic activity against FLT3ITD in drug-resistant AML, relapsed/refractory AML, and in AML bearing a combination of epigenetic mutations of TET2 along with FLT3ITD. We demonstrate that HSN748 outperformed the FDA-approved FLT3 inhibitor Gilteritinib in terms of inhibitory activity against FLT3ITD in vivo.
Baskar Ramdas, Neetu Dayal, Ruchi Pandey, Elizabeth Larocque, Rahul Kanumuri, Santhosh Kumar Pasupuleti, Sheng Liu, Chrysi Kanellopoulou, Elizabeth Fei Yin Chu, Rodrigo Mohallem, Saniya Virani, Gaurav Chopra, Uma K. Aryal, Rena Lapidus, Jun Wan, Ashkan Emadi, Laura S. Haneline, Frederick W. Holtsberg, M. Javad Aman, Herman O. Sintim, Reuben Kapur
Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected mouse DMD-induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD-iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Remarkably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation, and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.
Ajda Lenardič, Seraina A. Domenig, Joel Zvick, Nicola Bundschuh, Monika Tarnowska-Sengül, Regula Furrer, Falko J. Noé, Christine Ling Li Trautmann, Adhideb Ghosh, Giada Bacchin, Pjeter Gjonlleshaj, Xhem Qabrati, Evi Masschelein, Katrien De Bock, Christoph Handschin, Ori Bar-Nur
Breast cancer stem cells (BCSCs) mitigate oxidative stress to maintain their viability and plasticity. However, the regulatory mechanism of oxidative stress in BCSCs remains unclear. We recently found that the histone reader ZMYND8 was upregulated in BCSCs. Here, we showed that ZMYND8 reduced ROS and iron to inhibit ferroptosis in aldehyde dehydrogenase (ALDH)high BCSCs, leading to BCSC expansion and tumor initiation in mice. The underlying mechanism involved a twofold posttranslational regulation of nuclear factor erythroid 2–related factor 2 (NRF2). ZMYND8 increased stability of NRF2 protein through KEAP1 silencing. On the other hand, ZMYND8 interacted with and recruited NRF2 to the promoters of antioxidant genes to enhance gene transcription in mammospheres. NRF2 phenocopied ZMYND8 to enhance BCSC stemness and tumor initiation by inhibiting ROS and ferroptosis. Loss of NRF2 counteracted ZMYND8’s effects on antioxidant genes and ROS in mammospheres. Interestingly, ZMYND8 expression was directly controlled by NRF2 in mammospheres. Collectively, these findings uncover a positive feedback loop that amplifies the antioxidant defense mechanism sustaining BCSC survival and stemness.
Maowu Luo, Lei Bao, Yuanyuan Xue, Ming Zhu, Ashwani Kumar, Chao Xing, Jennifer E Wang, Yingfei Wang, Weibo Luo
Mutations in ATP-binding cassette A3 (ABCA3), a phospholipid transporter critical for surfactant homeostasis in pulmonary alveolar type II epithelial cells (AEC2s), are the most common genetic causes of childhood interstitial lung disease (chILD). Treatments for patients with pathological variants of ABCA3 mutations are limited, in part due to a lack of understanding of disease pathogenesis resulting from an inability to access primary AEC2s from affected children. Here, we report the generation of AEC2s from affected patient induced pluripotent stem cells (iPSCs) carrying homozygous versions of multiple ABCA3 mutations. We generated syngeneic CRISPR/Cas9 gene-corrected and uncorrected iPSCs and ABCA3-mutant knockin ABCA3:GFP fusion reporter lines for in vitro disease modeling. We observed an expected decreased capacity for surfactant secretion in ABCA3-mutant iPSC-derived AEC2s (iAEC2s), but we also found an unexpected epithelial-intrinsic aberrant phenotype in mutant iAEC2s, presenting as diminished progenitor potential, increased NFκB signaling, and the production of pro-inflammatory cytokines. The ABCA3:GFP fusion reporter permitted mutant-specific, quantifiable characterization of lamellar body size and ABCA3 protein trafficking, functional features that are perturbed depending on ABCA3 mutation type. Our disease model provides a platform for understanding ABCA3 mutation–mediated mechanisms of alveolar epithelial cell dysfunction that may trigger chILD pathogenesis.
Yuliang L. Sun, Erin E. Hennessey, Hillary Heins, Ping Yang, Carlos Villacorta-Martin, Julian Kwan, Krithi Gopalan, Marianne James, Andrew Emili, F. Sessions Cole, Jennifer A. Wambach, Darrell N. Kotton
Vaidya Govindarajan, Jay Chandar, Avindra Nath, Ashish H. Shah