Many signaling pathways that contribute to tumorigenesis are also functional in pregnancy, although they are dysregulated in the former and tightly regulated in the latter. Transformation-related protein 53 (Trp53), which encodes p53, is a tumor suppressor gene whose mutation is strongly associated with cancer. However, its role in normal physiological processes, including female reproduction, is poorly understood. Mice that have a constitutive deletion of Trp53 exhibit widespread development of carcinogenesis at early reproductive ages, compromised spermatogenesis, and fetal exencephaly, rendering them less amenable to studying the role of p53 in reproduction. To overcome this obstacle, we generated mice that harbor a conditional deletion of uterine Trp53 and examined pregnancy outcome in females with this genotype. These mice had normal ovulation, fertilization, and implantation; however, postimplantation uterine decidual cells showed terminal differentiation and senescence-associated growth restriction with increased levels of phosphorylated Akt and p21, factors that are both known to participate in these processes in other systems. Strikingly, uterine deletion of Trp53 increased the incidence of preterm birth, a condition that was corrected by oral administration of the selective COX2 inhibitor celecoxib. We further generated evidence to suggest that deletion of uterine Trp53 induces preterm birth through a COX2/PGF synthase/PGF2α pathway. Taken together, our observations underscore what we believe to be a new critical role of uterine p53 in parturition.
Yasushi Hirota, Takiko Daikoku, Susanne Tranguch, Huirong Xie, Heather B. Bradshaw, Sudhansu K. Dey
Protein interacting with C kinase 1 (PICK1) is a peripheral membrane protein involved in protein trafficking, a function that has been well characterized in neurons. Here, we report that male mice deficient in PICK1 are infertile and have a phenotype resembling the human disease globozoospermia. The primary defect in the testes of Pick1-knockout mice was fragmentation of acrosomes in the early stages of spermiogenesis. This fragmentation was followed by defects in nuclear elongation and mitochondrial sheath formation, leading to round-headed sperm, reduced sperm count, and severely impaired sperm motility. We found that PICK1 interacted with Golgi-associated PDZ- and coiled-coil motif–containing protein (GOPC) and the primary catalytic subunit of protein kinase 2 (CK2α′), proteins whose deficiencies lead to globozoospermia in mice. PICK1 was highly expressed in round spermatids and localized to Golgi-derived proacrosomal granules. GOPC colocalized with PICK1 in the Golgi region and facilitated formation of PICK1-positive clusters. Furthermore, there was an increase in apoptosis in the seminiferous tubules of Pick1–/– mice, a phenotype also seen in CK2α′-deficient mice. Our results suggest that PICK1 is involved in vesicle trafficking from the Golgi apparatus to the acrosome and cooperates with other proteins such as GOPC and CK2α′ in acrosome biogenesis.
Nan Xiao, Chuen Kam, Chong Shen, Wenying Jin, Junqi Wang, Kwong Man Lee, Liwen Jiang, Jun Xia
Egg activation, which is the first step in the initiation of embryo development, involves both completion of meiosis and progression into mitotic cycles. In mammals, the fertilizing sperm delivers the activating signal, which consists of oscillations in free cytosolic Ca2+ concentration ([Ca2+]i). Intracytoplasmic sperm injection (ICSI) is a technique that in vitro fertilization clinics use to treat a myriad of male factor infertility cases. Importantly, some patients who repeatedly fail ICSI also fail to induce egg activation and are, therefore, sterile. Here, we have found that sperm from patients who repeatedly failed ICSI were unable to induce [Ca2+]i oscillations in mouse eggs. We have also shown that PLC, zeta 1 (PLCZ1), the sperm protein thought to induce [Ca2+]i oscillations, was localized to the equatorial region of wild-type sperm heads but was undetectable in sperm from patients who had failed ICSI. The absence of PLCZ1 in these patients was further confirmed by Western blot, although genomic sequencing failed to reveal conclusive PLCZ1 mutations. Using mouse eggs, we reproduced the failure of sperm from these patients to induce egg activation and rescued it by injection of mouse Plcz1 mRNA. Together, our results indicate that the inability of human sperm to initiate [Ca2+]i oscillations leads to failure of egg activation and sterility and that abnormal PLCZ1 expression underlies this functional defect.
Sook-Young Yoon, Teru Jellerette, Ana Maria Salicioni, Hoi Chang Lee, Myung-sik Yoo, Kevin Coward, John Parrington, Daniel Grow, Jose B. Cibelli, Pablo E. Visconti, Jesse Mager, Rafael A. Fissore
Idiopathic hypogonadotropic hypogonadism (IHH) with anosmia (Kallmann syndrome; KS) or with a normal sense of smell (normosmic IHH; nIHH) are heterogeneous genetic disorders associated with deficiency of gonadotropin-releasing hormone (GnRH). While loss-of-function mutations in FGF receptor 1 (FGFR1) cause human GnRH deficiency, to date no specific ligand for FGFR1 has been identified in GnRH neuron ontogeny. Using a candidate gene approach, we identified 6 missense mutations in FGF8 in IHH probands with variable olfactory phenotypes. These patients exhibited varied degrees of GnRH deficiency, including the rare adult-onset form of hypogonadotropic hypogonadism. Four mutations affected all 4 FGF8 splice isoforms (FGF8a, FGF8b, FGF8e, and FGF8f), while 2 mutations affected FGF8e and FGF8f isoforms only. The mutant FGF8b and FGF8f ligands exhibited decreased biological activity in vitro. Furthermore, mice homozygous for a hypomorphic Fgf8 allele lacked GnRH neurons in the hypothalamus, while heterozygous mice showed substantial decreases in the number of GnRH neurons and hypothalamic GnRH peptide concentration. In conclusion, we identified FGF8 as a gene implicated in GnRH deficiency in both humans and mice and demonstrated an exquisite sensitivity of GnRH neuron development to reductions in FGF8 signaling.
John Falardeau, Wilson C.J. Chung, Andrew Beenken, Taneli Raivio, Lacey Plummer, Yisrael Sidis, Elka E. Jacobson-Dickman, Anna V. Eliseenkova, Jinghong Ma, Andrew Dwyer, Richard Quinton, Sandra Na, Janet E. Hall, Celine Huot, Natalie Alois, Simon H.S. Pearce, Lindsay W. Cole, Virginia Hughes, Moosa Mohammadi, Pei Tsai, Nelly Pitteloud
Luteinizing hormone (LH), produced in the anterior lobe of the pituitary, is a member of the hypothalamic-pituitary-gonad axis that is required for production of the sex hormones estradiol, progesterone, and testosterone. Perturbations in levels of hormones associated with this axis can result in defects in sexual development and maturity. LH bears unique N-linked carbohydrate units that terminate with a sulfated N-acetylgalactosamine structure (GalNAc-4-SO4) that mediates its clearance from the blood. To determine the significance of this terminal structure, we ablated the gene encoding the sulfotransferase responsible for sulfate addition to GalNAc on LH, GalNAc-4-sulfotransferase-1 (GalNAc-4-ST1) in mice. Mice lacking GalNAc-4-ST1 exhibited increased levels of circulating LH. In male mice, this resulted in elevated levels of testosterone and precocious maturation of testis and seminal vesicles. Female mice lacking GalNAc-4-ST1 demonstrated elevated estrogen levels and exhibited precocious sexual maturation and increased fecundity. Female mice remained in estrus for prolonged periods and produced almost 50% more litters per mouse than wild-type mice over the same period of time. Thus, sulfate modification of the terminal glycosylation of LH plays a central role in regulating the hypothalamic-pituitary-gonad axis in vivo.
Yiling Mi, Dorothy Fiete, Jacques U. Baenziger
The microRNA (miRNA) processing enzyme Dicer1 is required for zygotic and embryonic development, but the early embryonic lethality of Dicer1 null alleles in mice has limited our ability to address the role of Dicer1 in normal mouse growth and development. To address this question, we used a mouse mutant with a hypomorphic Dicer1 allele (Dicerd/d) and found that Dicer1 deficiency resulted in female infertility. This defect in female Dicerd/d mice was caused by corpus luteum (CL) insufficiency and resulted, at least in part, from the impaired growth of new capillary vessels in the ovary. We found that the impaired CL angiogenesis in Dicerd/d mice was associated with a lack of miR17-5p and let7b, 2 miRNAs that participate in angiogenesis by regulating the expression of the antiangiogenic factor tissue inhibitor of metalloproteinase 1. Furthermore, injection of miR17-5p and let7b into the ovaries of Dicerd/d mice partially normalized tissue inhibitor of metalloproteinase 1 expression and CL angiogenesis. Our data indicate that the development and function of the ovarian CL is a physiological process that appears to be regulated by miRNAs and requires Dicer1 function.
Motoyuki Otsuka, Min Zheng, Masaaki Hayashi, Jing-Dwan Lee, Osamu Yoshino, Shengcai Lin, Jiahuai Han
Pelvic organ prolapse (POP) is a common, debilitating disorder affecting millions of women. Uterosacral ligaments (USLs) are the main supportive structures of the uterus and vagina and are often attenuated in women with POP. Although the mechanical strength of USLs is known to be dependent on collagen synthesis and catabolism and the degradation protein MMP2 has been implicated in POP, the molecular mechanisms involved in the development of POP are currently unknown. Homeobox (HOX) genes are transcriptional regulators that orchestrate embryonic development of the urogenital tract. We demonstrated here that HOXA11 was essential for organogenesis of the USL by showing that USLs were absent in Hoxa11-null mice. We compared expression of HOXA11, collagen type I, collagen type III, MMP2, and MMP9 in USLs of women with and without POP. Expression of HOXA11 and both collagens was dramatically decreased while MMP2 was increased in women with POP. Constitutive expression of Hoxa11 in murine fibroblasts resulted in significantly increased expression of collagen type III and decreased expression of MMP2. These results identified HOXA11 as an essential gene for the development of the USL and suggested that women with POP might have weakened connective tissue due to changes in a signaling pathway involving HOXA11, collagen type III, and MMP2.
Kathleen A. Connell, Marsha K. Guess, Heidi Chen, Vaagn Andikyan, Richard Bercik, Hugh S. Taylor
Maternal smoking during pregnancy is associated with a variety of adverse neonatal outcomes including altered reproductive performance. Herein we provide molecular evidence for a pathway involved in the elimination of the female germline due to prepregnancy and/or lactational exposure to polycyclic aromatic hydrocarbons (PAHs), environmental toxicants found in cigarette smoke. We show that ovaries of offspring born to mice exposed to PAHs contained only a third of the ovarian follicle pool compared with offspring of unexposed female mice. Activation of the cell death pathway in immature follicles of exposed females was mediated by the aryl hydrocarbon receptor (Ahr), as ovarian reserve was fully rescued by maternal cotreatment with the Ahr antagonist, resveratrol, or by inactivation of the Ahr gene. Furthermore, in response to PAHs, Ahr-mediated activation of the harakiri, BCL2 interacting protein (contains only BH3 domain), was necessary for execution of cell death. This pathway appeared to be conserved between mouse and human, as xenotransplanted human ovarian cortex exposed to PAHs responded by activation of the identical cell death cascade. Our data indicate that maternal exposure to PAHs prior to pregnancy and/or during lactation compromises ovarian reserve of female offspring, raising the concern about the transgenerational impact of maternal smoking on ovarian function in the human.
Andrea Jurisicova, Asako Taniuchi, Han Li, Yuan Shang, Monica Antenos, Jacqui Detmar, Jing Xu, Tiina Matikainen, Adalberto Benito Hernández, Gabriel Nunez, Robert F. Casper
Uterine decidualization, a process that occurs in response to embryo implantation, is critical for embryonic survival and thus is a key event for successful pregnancy. Here we show that the sphingolipid metabolic pathway is highly activated in the deciduum during pregnancy and disturbance of the pathway by disruption of sphingosine kinase (Sphk) genes causes defective decidualization with severely compromised uterine blood vessels, leading to early pregnancy loss. Sphk-deficient female mice (Sphk1–/–Sphk2+/–) exhibited both an enormous accumulation of dihydrosphingosine and sphingosine and a reduction in phosphatidylethanolamine levels in pregnant uteri. These mice also revealed increased cell death in decidual cells, decreased cell proliferation in undifferentiated stromal cells, and massive breakage of decidual blood vessels, leading to uterine hemorrhage and early embryonic lethality. Thus, sphingolipid metabolism regulates proper uterine decidualization and blood vessel stability. Our findings also suggest that disturbance in sphingolipid metabolism may be considered as a cause of pregnancy loss in humans.
Kiyomi Mizugishi, Cuiling Li, Ana Olivera, Jacek Bielawski, Alicja Bielawska, Chu-Xia Deng, Richard L. Proia
β-Glucosidase 2 (GBA2) is a resident enzyme of the endoplasmic reticulum thought to play a role in the metabolism of bile acid–glucose conjugates. To gain insight into the biological function of this enzyme and its substrates, we generated mice deficient in GBA2 and found that these animals had normal bile acid metabolism. Knockout males exhibited impaired fertility. Microscopic examination of sperm revealed large round heads (globozoospermia), abnormal acrosomes, and defective mobility. Glycolipids, identified as glucosylceramides by mass spectrometry, accumulated in the testes, brains, and livers of the knockout mice but did not cause obvious neurological symptoms, organomegaly, or a reduction in lifespan. Recombinant GBA2 hydrolyzed glucosylceramide to glucose and ceramide; the same reaction catalyzed by the β-glucosidase acid 1 (GBA1) defective in subjects with the Gaucher’s form of lysosomal storage disease. We conclude that GBA2 is a glucosylceramidase whose loss causes accumulation of glycolipids and an endoplasmic reticulum storage disease.
Yildiz Yildiz, Heidrun Matern, Bonne Thompson, Jeremy C. Allegood, Rebekkah L. Warren, Denise M.O. Ramirez, Robert E. Hammer, F. Kent Hamra, Siegfried Matern, David W. Russell