Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Pulmonology

  • 218 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 19
  • 20
  • 21
  • 22
  • Next →
Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin
Liat Linde, … , Eitan Kerem, Batsheva Kerem
Liat Linde, … , Eitan Kerem, Batsheva Kerem
Published March 1, 2007
Citation Information: J Clin Invest. 2007;117(3):683-692. https://doi.org/10.1172/JCI28523.
View: Text | PDF

Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin

  • Text
  • PDF
Abstract

Aminoglycosides can readthrough premature termination codons (PTCs), permitting translation of full-length proteins. Previously we have found variable efficiency of readthrough in response to the aminoglycoside gentamicin among cystic fibrosis (CF) patients, all carrying the W1282X nonsense mutation. Here we demonstrate that there are patients in whom the level of CF transmembrane conductance regulator (CFTR) nonsense transcripts is markedly reduced, while in others it is significantly higher. Response to gentamicin was found only in patients with the higher level. We further investigated the possibility that the nonsense-mediated mRNA decay (NMD) might vary among cells and hence governs the level of nonsense transcripts available for readthrough. Our results demonstrate differences in NMD efficiency of CFTR transcripts carrying the W1282X mutation among different epithelial cell lines derived from the same tissue. Variability was also found for 5 physiologic NMD substrates, RPL3, SC35 1.6 kb, SC35 1.7 kb, ASNS, and CARS. Importantly, our results demonstrate the existence of cells in which NMD of all transcripts was efficient and others in which the NMD was less efficient. Downregulation of NMD in cells carrying the W1282X mutation increased the level of CFTR nonsense transcripts and enhanced the CFTR chloride channel activity in response to gentamicin. Together our results suggest that the efficiency of NMD might vary and hence have an important role in governing the response to treatments aiming to promote readthrough of PTCs in many genetic diseases.

Authors

Liat Linde, Stephanie Boelz, Malka Nissim-Rafinia, Yifat S. Oren, Michael Wilschanski, Yasmin Yaacov, Dov Virgilis, Gabriele Neu-Yilik, Andreas E. Kulozik, Eitan Kerem, Batsheva Kerem

×

Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR
William R. Thelin, … , M. Jackson Stutts, Sharon L. Milgram
William R. Thelin, … , M. Jackson Stutts, Sharon L. Milgram
Published February 1, 2007
Citation Information: J Clin Invest. 2007;117(2):364-374. https://doi.org/10.1172/JCI30376.
View: Text | PDF

Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR

  • Text
  • PDF
Abstract

The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation.

Authors

William R. Thelin, Yun Chen, Martina Gentzsch, Silvia M. Kreda, Jennifer L. Sallee, Cameron O. Scarlett, Christoph H. Borchers, Ken Jacobson, M. Jackson Stutts, Sharon L. Milgram

×

Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis
Javier Rangel-Moreno, … , Moises Selman, Troy D. Randall
Javier Rangel-Moreno, … , Moises Selman, Troy D. Randall
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3183-3194. https://doi.org/10.1172/JCI28756.
View: Text | PDF

Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis

  • Text
  • PDF
Abstract

Bronchus-associated lymphoid tissue (BALT) was originally described as a mucosal lymphoid organ in the lungs of some species. However, while the lungs of naive mice and humans typically lack BALT, pulmonary infection in mice leads to the development of inducible BALT (iBALT), which is located in peribronchial, perivascular, and interstitial areas throughout the lung. Here we investigated whether iBALT forms in patients with a variety of interstitial lung diseases. We show that while iBALT can be found in the lungs of patients suffering from multiple diseases, well-developed iBALT is most prevalent in patients with pulmonary complications of RA and Sjögren syndrome. In these patients, iBALT consisted of numerous B cell follicles containing germinal centers and follicular dendritic cells. A loosely defined T cell area surrounded the B cell follicles while lymphatics and high endothelial venules were found at the B cell/T cell interface. Increased expression of lymphoid-organizing chemokines, such as CXCL13 and CCL21, as well as molecules involved in the immunopathology of RA, such as B cell–activating factor of the TNF family (BAFF), ICOS ligand, and lymphotoxin, correlated with more well-developed iBALT. Finally, the presence of iBALT correlated with tissue damage in the lungs of RA patients, suggesting that iBALT participates in local RA pathogenesis.

Authors

Javier Rangel-Moreno, Louise Hartson, Carmen Navarro, Miguel Gaxiola, Moises Selman, Troy D. Randall

×

Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation
Alexander Zarbock, … , Kai Singbartl, Klaus Ley
Alexander Zarbock, … , Kai Singbartl, Klaus Ley
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3211-3219. https://doi.org/10.1172/JCI29499.
View: Text | PDF

Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation

  • Text
  • PDF
Abstract

Acute lung injury (ALI) causes high mortality, but its molecular mechanisms are poorly understood. Acid aspiration is a frequent cause of ALI, leading to neutrophil sequestration, increased permeability, and deterioration of gas exchange. We investigated the role of platelet-neutrophil interactions in a murine model of acid-induced ALI. Acid aspiration induced P-selectin–dependent platelet-neutrophil interactions in blood and in lung capillaries. Reducing circulating platelets or blocking P-selectin halted the development of ALI. Bone marrow chimeras showed that platelet, not endothelial, P-selectin was responsible for the injury. The interaction of platelets with neutrophils and endothelia was associated with TXA2 formation, with detrimental effects on permeability and tissue function. Activated platelets induced endothelial expression of ICAM-1 and increased neutrophil adhesion. Inhibition of platelet-neutrophil aggregation improved gas exchange, reduced neutrophil recruitment and permeability, and prolonged survival. The key findings were confirmed in a sepsis-induced model of ALI. These findings may translate into improved clinical treatments for ALI.

Authors

Alexander Zarbock, Kai Singbartl, Klaus Ley

×

Toll-like receptor 4 deficiency causes pulmonary emphysema
Xuchen Zhang, … , Lauren Cohn, Patty J. Lee
Xuchen Zhang, … , Lauren Cohn, Patty J. Lee
Published November 1, 2006
Citation Information: J Clin Invest. 2006;116(11):3050-3059. https://doi.org/10.1172/JCI28139.
View: Text | PDF

Toll-like receptor 4 deficiency causes pulmonary emphysema

  • Text
  • PDF
Abstract

TLRs have been studied extensively in the context of pathogen challenges, yet their role in the unchallenged lung is unknown. Given their direct interface with the external environment, TLRs in the lungs are prime candidates to respond to air constituents, namely particulates and oxygen. The mechanism whereby the lung maintains structural integrity in the face of constant ambient exposures is essential to our understanding of lung disease. Emphysema is characterized by gradual loss of lung elasticity and irreversible airspace enlargement, usually in the later decades of life and after years of insult, most commonly cigarette smoke. Here we show Tlr4–/– mice exhibited emphysema as they aged. Adoptive transfer experiments revealed that TLR4 expression in lung structural cells was required for maintaining normal lung architecture. TLR4 deficiency led to the upregulation of what we believe to be a novel NADPH oxidase (Nox), Nox3, in lungs and endothelial cells, resulting in increased oxidant generation and elastolytic activity. Treatment of Tlr4–/– mice or endothelial cells with chemical NADPH inhibitors or Nox3 siRNA reversed the observed phenotype. Our data identify a role for TLR4 in maintaining constitutive lung integrity by modulating oxidant generation and provide insights into the development of emphysema.

Authors

Xuchen Zhang, Peiying Shan, Ge Jiang, Lauren Cohn, Patty J. Lee

×

Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function
Marco Idzko, … , Henk C. Hoogsteden, Bart N. Lambrecht
Marco Idzko, … , Henk C. Hoogsteden, Bart N. Lambrecht
Published November 1, 2006
Citation Information: J Clin Invest. 2006;116(11):2935-2944. https://doi.org/10.1172/JCI28295.
View: Text | PDF

Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function

  • Text
  • PDF
Abstract

Airway DCs play a crucial role in the pathogenesis of allergic asthma, and interfering with their function could constitute a novel form of therapy. The sphingosine 1–phosphate receptor agonist FTY720 is an oral immunosuppressant that retains lymphocytes in lymph nodes and spleen, thus preventing lymphocyte migration to inflammatory sites. The accompanying lymphopenia could be a serious side effect that would preclude the use of FTY720 as an antiasthmatic drug. Here we show in a murine asthma model that local application of FTY720 via inhalation prior to or during ongoing allergen challenge suppresses Th2-dependent eosinophilic airway inflammation and bronchial hyperresponsiveness without causing lymphopenia and T cell retention in the lymph nodes. Effectiveness of local treatment was achieved by inhibition of the migration of lung DCs to the mediastinal lymph nodes, which in turn inhibited the formation of allergen-specific Th2 cells in lymph nodes. Also, FTY720-treated DCs were intrinsically less potent in activating naive and effector Th2 cells due to a reduced capacity to form stable interactions with T cells and thus to form an immunological synapse. These data support the concept that targeting the function of airway DCs with locally acting drugs is a powerful new strategy in the treatment of asthma.

Authors

Marco Idzko, Hamida Hammad, Menno van Nimwegen, Mirjam Kool, Tobias Müller, Thomas Soullié, Monique A.M. Willart, Daniëlle Hijdra, Henk C. Hoogsteden, Bart N. Lambrecht

×

Calcineurin/Nfat signaling is required for perinatal lung maturation and function
Vrushank Davé, … , Gerald R. Crabtree, Jeffrey A. Whitsett
Vrushank Davé, … , Gerald R. Crabtree, Jeffrey A. Whitsett
Published October 2, 2006
Citation Information: J Clin Invest. 2006;116(10):2597-2609. https://doi.org/10.1172/JCI27331.
View: Text | PDF

Calcineurin/Nfat signaling is required for perinatal lung maturation and function

  • Text
  • PDF
Abstract

Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respiratory epithelium of the fetal mouse. Deletion of Cnb1 caused respiratory failure after birth and inhibited the structural maturation of the peripheral lung. Synthesis of surfactant and a lamellar body–associated protein, ABC transporter A3 (ABCA3), was decreased prior to birth. Nuclear factor of activated T cells (Nfat) calcineurin-dependent 3 (Nfatc3), a transcription factor modulated by calcineurin, was identified as a direct activator of Sftpa, Sftpb, Sftpc, Abca3, Foxa1, and Foxa2 genes. The calcineurin/Nfat pathway controls the morphologic maturation of lungs prior to birth and regulates expression of genes involved in surfactant homeostasis that are critical for adaptation to air breathing.

Authors

Vrushank Davé, Tawanna Childs, Yan Xu, Machiko Ikegami, Valérie Besnard, Yutaka Maeda, Susan E. Wert, Joel R. Neilson, Gerald R. Crabtree, Jeffrey A. Whitsett

×

Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries
Kaushik Parthasarathi, … , Andrew Issekutz, Jahar Bhattacharya
Kaushik Parthasarathi, … , Andrew Issekutz, Jahar Bhattacharya
Published September 1, 2006
Citation Information: J Clin Invest. 2006;116(9):2562-2562. https://doi.org/10.1172/JCI26605C1.
View: Text | PDF | Amended Article

Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries

  • Text
  • PDF
Abstract

Authors

Kaushik Parthasarathi, Hideo Ichimura, Eiji Monma, Jens Lindert, Sadiqa Quadri, Andrew Issekutz, Jahar Bhattacharya

×

Connexin 43 mediates spread of Ca2+ -dependent proinflammatory responses in lung capillaries
Kaushik Parthasarathi, … , Andrew Issekutz, Jahar Bhattacharya
Kaushik Parthasarathi, … , Andrew Issekutz, Jahar Bhattacharya
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2193-2200. https://doi.org/10.1172/JCI26605.
View: Text | PDF | Corrigendum

Connexin 43 mediates spread of Ca2+ -dependent proinflammatory responses in lung capillaries

  • Text
  • PDF
Abstract

Acute lung injury (ALI), which is associated with a mortality of 30–40%, is attributable to inflammation that develops rapidly across the lung’s vast vascular surface, involving an entire lung or even both lungs. No specific mechanism explains this extensive inflammatory spread, probably because of the lack of approaches for detecting signal conduction in lung capillaries. Here, we addressed this question by applying the photolytic uncaging approach to induce focal increases in Ca2+ levels in targeted endothelial cells of alveolar capillaries. Uncaging caused Ca2+ levels to increase not only in the targeted cell, but also in vascular locations up to 150 μm from the target site, indicating that Ca2+ was conducted from the capillary to adjacent vessels. No such conduction was evident in mouse lungs lacking endothelial connexin 43 (Cx43), or in rat lungs in which we pretreated vessels with peptide inhibitors of Cx43. These findings provide the first direct evidence to our knowledge that interendothelial Ca2+ conduction occurs in the lung capillary bed and that Cx43-containing gap junctions mediate the conduction. A proinflammatory effect was evident in that induction of increases in Ca2+ levels in the capillary activated expression of the leukocyte adherence receptor P-selectin in venules. Further, peptide inhibitors of Cx43 completely blocked thrombin-induced microvascular permeability increases. Together, our findings reveal a novel role for Cx43-mediated gap junctions, namely as conduits for the spread of proinflammatory signals in the lung capillary bed. Gap junctional mechanisms require further consideration in the understanding of ALI.

Authors

Kaushik Parthasarathi, Hideo Ichimura, Eiji Monma, Jens Lindert, Sadiqa Quadri, Andrew Issekutz, Jahar Bhattacharya

×

Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury
Chun-Xiao Sun, … , Dewan Zeng, Michael R. Blackburn
Chun-Xiao Sun, … , Dewan Zeng, Michael R. Blackburn
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2173-2182. https://doi.org/10.1172/JCI27303.
View: Text | PDF

Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury

  • Text
  • PDF
Abstract

Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase–deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883–treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy.

Authors

Chun-Xiao Sun, Hongyan Zhong, Amir Mohsenin, Eva Morschl, Janci L. Chunn, Jose G. Molina, Luiz Belardinelli, Dewan Zeng, Michael R. Blackburn

×
  • ← Previous
  • 1
  • 2
  • …
  • 19
  • 20
  • 21
  • 22
  • Next →
Mucus tethering in asthma
Luke Bonser and colleagues characterize the composition and transport of pathogenic, asthma-associated mucus…
Published May 16, 2016
Scientific Show StopperPulmonology

Translating mechanical stress to fibrogenesis
Shaik Rahaman and colleagues reveal that TRPV4 channel activity links mechanical stress and pulmonary fibrosis…
Published November 3, 2014
Scientific Show StopperPulmonology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts