Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Oncology

  • 1,384 Articles
  • 14 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 86
  • 87
  • 88
  • …
  • 138
  • 139
  • Next →
Rare codons capacitate Kras-driven de novo tumorigenesis
Nicole L.K. Pershing, Benjamin L. Lampson, Jason A. Belsky, Erin Kaltenbrun, David M. MacAlpine, Christopher M. Counter
Nicole L.K. Pershing, Benjamin L. Lampson, Jason A. Belsky, Erin Kaltenbrun, David M. MacAlpine, Christopher M. Counter
View: Text | PDF

Rare codons capacitate Kras-driven de novo tumorigenesis

  • Text
  • PDF
Abstract

The KRAS gene is commonly mutated in human cancers, rendering the encoded small GTPase constitutively active and oncogenic. This gene has the unusual feature of being enriched for rare codons, which limit protein expression. Here, to determine the effect of the rare codon bias of the KRAS gene on de novo tumorigenesis, we introduced synonymous mutations that converted rare codons into common codons in exon 3 of the Kras gene in mice. Compared with control animals, mice with at least 1 copy of this Krasex3op allele had fewer tumors following carcinogen exposure, and this allele was mutated less often, with weaker oncogenic mutations in these tumors. This reduction in tumorigenesis was attributable to higher expression of the Krasex3op allele, which induced growth arrest when oncogenic and exhibited tumor-suppressive activity when not mutated. Together, our data indicate that the inherent rare codon bias of KRAS plays an integral role in tumorigenesis.

Authors

Nicole L.K. Pershing, Benjamin L. Lampson, Jason A. Belsky, Erin Kaltenbrun, David M. MacAlpine, Christopher M. Counter

×

Preexisting oncogenic events impact trastuzumab sensitivity in ERBB2-amplified gastroesophageal adenocarcinoma
Jihun Kim, Cameron Fox, Shouyong Peng, Mark Pusung, Eirini Pectasides, Eric Matthee, Yong Sang Hong, In-Gu Do, Jiryeon Jang, Aaron R. Thorner, Paul Van Hummelen, Anil K. Rustgi, Kwok-Kin Wong, Zhongren Zhou, Ping Tang, Kyoung-Mee Kim, Jeeyun Lee, Adam J. Bass
Jihun Kim, Cameron Fox, Shouyong Peng, Mark Pusung, Eirini Pectasides, Eric Matthee, Yong Sang Hong, In-Gu Do, Jiryeon Jang, Aaron R. Thorner, Paul Van Hummelen, Anil K. Rustgi, Kwok-Kin Wong, Zhongren Zhou, Ping Tang, Kyoung-Mee Kim, Jeeyun Lee, Adam J. Bass
View: Text | PDF

Preexisting oncogenic events impact trastuzumab sensitivity in ERBB2-amplified gastroesophageal adenocarcinoma

  • Text
  • PDF
Abstract

Patients with gastric and esophageal (GE) adenocarcinoma tumors in which the oncogene ERBB2 has been amplified are routinely treated with a combination of cytotoxic chemotherapy and the ERBB2-directed antibody trastuzumab; however, the addition of trastuzumab, even when tested in a selected biomarker-positive patient population, provides only modest survival gains. To investigate the potential reasons for the modest impact of ERBB2-directed therapies, we explored the hypothesis that secondary molecular features of ERBB2-amplified GE adenocarcinomas attenuate the impact of ERBB2 blockade. We analyzed genomic profiles of ERBB2-amplified GE adenocarcinomas and determined that the majority of ERBB2-amplified tumors harbor secondary oncogenic alterations that have the potential to be therapeutically targeted. These secondary events spanned genes involved in cell-cycle regulation as well as phosphatidylinositol-3 kinase and receptor tyrosine kinase signaling. Using ERBB2-amplified cell lines, we demonstrated that secondary oncogenic events could confer resistance to ERBB2-directed therapies. Moreover, this resistance could be overcome by targeting the secondary oncogene in conjunction with ERBB2-directed therapy. EGFR is commonly coamplified with ERBB2, and in the setting of ERBB2 amplification, higher EGFR expression appears to mark tumors with greater sensitivity to dual EGFR/ERBB2 kinase inhibitors. These data suggest that combination inhibitor strategies, guided by secondary events in ERBB2-amplified GE adenocarcinomas, should be evaluated in clinical trials.

Authors

Jihun Kim, Cameron Fox, Shouyong Peng, Mark Pusung, Eirini Pectasides, Eric Matthee, Yong Sang Hong, In-Gu Do, Jiryeon Jang, Aaron R. Thorner, Paul Van Hummelen, Anil K. Rustgi, Kwok-Kin Wong, Zhongren Zhou, Ping Tang, Kyoung-Mee Kim, Jeeyun Lee, Adam J. Bass

×

LYN-activating mutations mediate antiestrogen resistance in estrogen receptor–positive breast cancer
Luis J. Schwarz, Emily M. Fox, Justin M. Balko, Joan T. Garrett, María Gabriela Kuba, Mónica Valeria Estrada, Ana María González-Angulo, Gordon B. Mills, Monica Red-Brewer, Ingrid A. Mayer, Vandana Abramson, Monica Rizzo, Mark C. Kelley, Ingrid M. Meszoely, Carlos L. Arteaga
Luis J. Schwarz, Emily M. Fox, Justin M. Balko, Joan T. Garrett, María Gabriela Kuba, Mónica Valeria Estrada, Ana María González-Angulo, Gordon B. Mills, Monica Red-Brewer, Ingrid A. Mayer, Vandana Abramson, Monica Rizzo, Mark C. Kelley, Ingrid M. Meszoely, Carlos L. Arteaga
View: Text | PDF

LYN-activating mutations mediate antiestrogen resistance in estrogen receptor–positive breast cancer

  • Text
  • PDF
Abstract

Estrogen receptor–positive (ER+) breast cancers adapt to hormone deprivation and become resistant to antiestrogen therapy. Here, we performed deep sequencing on ER+ tumors that remained highly proliferative after treatment with the aromatase inhibitor letrozole and identified a D189Y mutation in the inhibitory SH2 domain of the SRC family kinase (SFK) LYN. Evaluation of 463 breast tumors in The Cancer Genome Atlas revealed four LYN mutations, two of which affected the SH2 domain. In addition, LYN was upregulated in multiple ER+ breast cancer lines resistant to long-term estrogen deprivation (LTED). An RNAi-based kinome screen revealed that LYN is required for growth of ER+ LTED breast cancer cells. Kinase assays and immunoblot analyses of SRC substrates in transfected cells indicated that LYND189Y has higher catalytic activity than WT protein. Further, LYND189Y exhibited reduced phosphorylation at the inhibitory Y507 site compared with LYNWT. Other SH2 domain LYN mutants, E159K and K209N, also exhibited higher catalytic activity and reduced inhibitory site phosphorylation. LYND189Y overexpression abrogated growth inhibition by fulvestrant and/or the PI3K inhibitor BKM120 in 3 ER+ breast cancer cell lines. The SFK inhibitor dasatinib enhanced the antitumor effect of BKM120 and fulvestrant against estrogen-deprived ER+ xenografts but not LYND189Y-expressing xenografts. These results suggest that LYN mutations mediate escape from antiestrogens in a subset of ER+ breast cancers.

Authors

Luis J. Schwarz, Emily M. Fox, Justin M. Balko, Joan T. Garrett, María Gabriela Kuba, Mónica Valeria Estrada, Ana María González-Angulo, Gordon B. Mills, Monica Red-Brewer, Ingrid A. Mayer, Vandana Abramson, Monica Rizzo, Mark C. Kelley, Ingrid M. Meszoely, Carlos L. Arteaga

×

Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis
Michelle Marques Howarth, David Simpson, Siu P. Ngok, Bethsaida Nieves, Ron Chen, Zurab Siprashvili, Dedeepya Vaka, Marcus R. Breese, Brian D. Crompton, Gabriela Alexe, Doug S. Hawkins, Damon Jacobson, Alayne L. Brunner, Robert West, Jaume Mora, Kimberly Stegmaier, Paul Khavari, E. Alejandro Sweet-Cordero
Michelle Marques Howarth, David Simpson, Siu P. Ngok, Bethsaida Nieves, Ron Chen, Zurab Siprashvili, Dedeepya Vaka, Marcus R. Breese, Brian D. Crompton, Gabriela Alexe, Doug S. Hawkins, Damon Jacobson, Alayne L. Brunner, Robert West, Jaume Mora, Kimberly Stegmaier, Paul Khavari, E. Alejandro Sweet-Cordero
View: Text | PDF

Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis

  • Text
  • PDF
Abstract

Chromosomal translocation that results in fusion of the genes encoding RNA-binding protein EWS and transcription factor FLI1 (EWS-FLI1) is pathognomonic for Ewing sarcoma. EWS-FLI1 alters gene expression through mechanisms that are not completely understood. We performed RNA sequencing (RNAseq) analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify gene targets of this oncoprotein. We determined that long noncoding RNA-277 (Ewing sarcoma–associated transcript 1 [EWSAT1]) is upregulated by EWS-FLI1 in pMPCs. Inhibition of EWSAT1 expression diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar, whereas EWSAT1 inhibition had no effect on other cell types tested. Expression of EWS-FLI1 and EWSAT1 repressed gene expression, and a substantial fraction of targets that were repressed by EWS-FLI1 were also repressed by EWSAT1. Analysis of RNAseq data from primary human Ewing sarcoma further supported a role for EWSAT1 in mediating gene repression. We identified heterogeneous nuclear ribonucleoprotein (HNRNPK) as an RNA-binding protein that interacts with EWSAT1 and found a marked overlap in HNRNPK-repressed genes and those repressed by EWS-FLI1 and EWSAT1, suggesting that HNRNPK participates in EWSAT1-mediated gene repression. Together, our data reveal that EWSAT1 is a downstream target of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes.

Authors

Michelle Marques Howarth, David Simpson, Siu P. Ngok, Bethsaida Nieves, Ron Chen, Zurab Siprashvili, Dedeepya Vaka, Marcus R. Breese, Brian D. Crompton, Gabriela Alexe, Doug S. Hawkins, Damon Jacobson, Alayne L. Brunner, Robert West, Jaume Mora, Kimberly Stegmaier, Paul Khavari, E. Alejandro Sweet-Cordero

×

Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer
Evgeniy B. Eruslanov, Pratik S. Bhojnagarwala, Jon G. Quatromoni, Tom Li Stephen, Anjana Ranganathan, Charuhas Deshpande, Tatiana Akimova, Anil Vachani, Leslie Litzky, Wayne W. Hancock, José R. Conejo-Garcia, Michael Feldman, Steven M. Albelda, Sunil Singhal
Evgeniy B. Eruslanov, Pratik S. Bhojnagarwala, Jon G. Quatromoni, Tom Li Stephen, Anjana Ranganathan, Charuhas Deshpande, Tatiana Akimova, Anil Vachani, Leslie Litzky, Wayne W. Hancock, José R. Conejo-Garcia, Michael Feldman, Steven M. Albelda, Sunil Singhal
View: Text | PDF

Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer

  • Text
  • PDF
Abstract

Infiltrating inflammatory cells are highly prevalent within the tumor microenvironment and mediate many processes associated with tumor progression; however, the contribution of specific populations remains unclear. For example, the nature and function of tumor-associated neutrophils (TANs) in the cancer microenvironment is largely unknown. The goal of this study was to provide a phenotypic and functional characterization of TANs in surgically resected lung cancer patients. We found that TANs constituted 5%–25% of cells isolated from the digested human lung tumors. Compared with blood neutrophils, TANs displayed an activated phenotype (CD62LloCD54hi) with a distinct repertoire of chemokine receptors that included CCR5, CCR7, CXCR3, and CXCR4. TANs produced substantial quantities of the proinflammatory factors MCP-1, IL-8, MIP-1α, and IL-6, as well as the antiinflammatory IL-1R antagonist. Functionally, both TANs and neutrophils isolated from distant nonmalignant lung tissue were able to stimulate T cell proliferation and IFN-γ release. Cross-talk between TANs and activated T cells led to substantial upregulation of CD54, CD86, OX40L, and 4-1BBL costimulatory molecules on the neutrophil surface, which bolstered T cell proliferation in a positive-feedback loop. Together our results demonstrate that in the earliest stages of lung cancer, TANs are not immunosuppressive, but rather stimulate T cell responses.

Authors

Evgeniy B. Eruslanov, Pratik S. Bhojnagarwala, Jon G. Quatromoni, Tom Li Stephen, Anjana Ranganathan, Charuhas Deshpande, Tatiana Akimova, Anil Vachani, Leslie Litzky, Wayne W. Hancock, José R. Conejo-Garcia, Michael Feldman, Steven M. Albelda, Sunil Singhal

×

NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells
Di Zhao, Yan Mo, Meng-Tian Li, Shao-Wu Zou, Zhou-Li Cheng, Yi-Ping Sun, Yue Xiong, Kun-Liang Guan, Qun-Ying Lei
Di Zhao, Yan Mo, Meng-Tian Li, Shao-Wu Zou, Zhou-Li Cheng, Yi-Ping Sun, Yue Xiong, Kun-Liang Guan, Qun-Ying Lei
View: Text | PDF

NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells

  • Text
  • PDF
Abstract

High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP–associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

Authors

Di Zhao, Yan Mo, Meng-Tian Li, Shao-Wu Zou, Zhou-Li Cheng, Yi-Ping Sun, Yue Xiong, Kun-Liang Guan, Qun-Ying Lei

×

GP130 activation induces myeloma and collaborates with MYC
Tobias Dechow, Sabine Steidle, Katharina S. Götze, Martina Rudelius, Kerstin Behnke, Konstanze Pechloff, Susanne Kratzat, Lars Bullinger, Falko Fend, Valeria Soberon, Nadya Mitova, Zhoulei Li, Markus Thaler, Jan Bauer, Elke Pietschmann, Corinna Albers, Rebekka Grundler, Marc Schmidt-Supprian, Jürgen Ruland, Christian Peschel, Justus Duyster, Stefan Rose-John, Florian Bassermann, Ulrich Keller
Tobias Dechow, Sabine Steidle, Katharina S. Götze, Martina Rudelius, Kerstin Behnke, Konstanze Pechloff, Susanne Kratzat, Lars Bullinger, Falko Fend, Valeria Soberon, Nadya Mitova, Zhoulei Li, Markus Thaler, Jan Bauer, Elke Pietschmann, Corinna Albers, Rebekka Grundler, Marc Schmidt-Supprian, Jürgen Ruland, Christian Peschel, Justus Duyster, Stefan Rose-John, Florian Bassermann, Ulrich Keller
View: Text | PDF

GP130 activation induces myeloma and collaborates with MYC

  • Text
  • PDF
Abstract

Multiple myeloma (MM) is a plasma cell neoplasm that results from clonal expansion of an Ig-secreting terminally differentiated B cell. Advanced MM is characterized by tissue damage that involves bone, kidney, and other organs and is typically associated with recurrent genetic abnormalities. IL-6 signaling via the IL-6 signal transducer GP130 has been implicated as an important driver of MM pathogenesis. Here, we demonstrated that ectopic expression of constitutively active GP130 (L-GP130) in a murine retroviral transduction-transplantation model induces rapid MM development of high penetrance. L-GP130–expressing mice recapitulated all of the characteristics of human disease, including monoclonal gammopathy, BM infiltration with lytic bone lesions, and protein deposition in the kidney. Moreover, the disease was easily transplantable and allowed different therapeutic options to be evaluated in vitro and in vivo. Using this model, we determined that GP130 signaling collaborated with MYC to induce MM and was responsible and sufficient for directing the plasma cell phenotype. Accordingly, we identified Myc aberrations in the L-GP130 MM model. Evaluation of human MM samples revealed recurrent activation of STAT3, a downstream target of GP130 signaling. Together, our results indicate that deregulated GP130 activity contributes to MM pathogenesis and that pathways downstream of GP130 activity have potential as therapeutic targets in MM.

Authors

Tobias Dechow, Sabine Steidle, Katharina S. Götze, Martina Rudelius, Kerstin Behnke, Konstanze Pechloff, Susanne Kratzat, Lars Bullinger, Falko Fend, Valeria Soberon, Nadya Mitova, Zhoulei Li, Markus Thaler, Jan Bauer, Elke Pietschmann, Corinna Albers, Rebekka Grundler, Marc Schmidt-Supprian, Jürgen Ruland, Christian Peschel, Justus Duyster, Stefan Rose-John, Florian Bassermann, Ulrich Keller

×

RASAL2 activates RAC1 to promote triple-negative breast cancer progression
Min Feng, Yi Bao, Zhimei Li, Juntao Li, Min Gong, Stella Lam, Jinhua Wang, Diego M. Marzese, Nicholas Donovan, Ern Yu Tan, Dave S.B. Hoon, Qiang Yu
Min Feng, Yi Bao, Zhimei Li, Juntao Li, Min Gong, Stella Lam, Jinhua Wang, Diego M. Marzese, Nicholas Donovan, Ern Yu Tan, Dave S.B. Hoon, Qiang Yu
View: Text | PDF

RASAL2 activates RAC1 to promote triple-negative breast cancer progression

  • Text
  • PDF
Abstract

Patients with triple-negative breast cancer (TNBC) have a high incidence of early relapse and metastasis; however, the molecular basis for recurrence in these individuals remains poorly understood. Here, we demonstrate that RASAL2, which encodes a RAS-GTPase–activating protein (RAS-GAP), is a functional target of anti-invasive microRNA-203 and is overexpressed in a subset of triple-negative or estrogen receptor–negative (ER-negative) breast tumors. As opposed to luminal B ER-positive breast cancers, in which RASAL2 has been shown to act as a RAS-GAP tumor suppressor, we found that RASAL2 is oncogenic in TNBC and drives mesenchymal invasion and metastasis. Moreover, high RASAL2 expression was predictive of poor disease outcomes in patients with TNBC. RASAL2 acted independently of its RAS-GAP catalytic activity in TNBC; however, RASAL2 promoted small GTPase RAC1 signaling, which promotes mesenchymal invasion, through binding and antagonizing the RAC1-GAP protein ARHGAP24. Together, these results indicate that activation of a RASAL2/ARHGAP24/RAC1 module contributes to TNBC tumorigenesis and identify a context-dependent role of RASAL2 in breast cancer.

Authors

Min Feng, Yi Bao, Zhimei Li, Juntao Li, Min Gong, Stella Lam, Jinhua Wang, Diego M. Marzese, Nicholas Donovan, Ern Yu Tan, Dave S.B. Hoon, Qiang Yu

×

Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth
Thanh U. Barbie, Gabriela Alexe, Amir R. Aref, Shunqiang Li, Zehua Zhu, Xiuli Zhang, Yu Imamura, Tran C. Thai, Ying Huang, Michaela Bowden, John Herndon, Travis J. Cohoon, Timothy Fleming, Pablo Tamayo, Jill P. Mesirov, Shuji Ogino, Kwok-Kin Wong, Matthew J. Ellis, William C. Hahn, David A. Barbie, William E. Gillanders
Thanh U. Barbie, Gabriela Alexe, Amir R. Aref, Shunqiang Li, Zehua Zhu, Xiuli Zhang, Yu Imamura, Tran C. Thai, Ying Huang, Michaela Bowden, John Herndon, Travis J. Cohoon, Timothy Fleming, Pablo Tamayo, Jill P. Mesirov, Shuji Ogino, Kwok-Kin Wong, Matthew J. Ellis, William C. Hahn, David A. Barbie, William E. Gillanders
View: Text | PDF

Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth

  • Text
  • PDF
Abstract

Triple-negative breast cancers (TNBCs) are a heterogeneous set of cancers that are defined by the absence of hormone receptor expression and estrogen-related receptor β (ERBB2) amplification. Here, we found that inducible IκB kinase–related (IKK-related) kinase IKBKE expression and JAK/STAT pathway activation compose a cytokine signaling network in the immune-activated subset of TNBC. We found that treatment of cultured IKBKE-driven breast cancer cells with CYT387, a potent inhibitor of TBK1/IKBKE and JAK signaling, impairs proliferation, while inhibition of JAK alone does not. CYT387 treatment inhibited activation of both NF-κB and STAT and disrupted expression of the protumorigenic cytokines CCL5 and IL-6 in these IKBKE-driven breast cancer cells. Moreover, in 3D culture models, the addition of CCL5 and IL-6 to the media not only promoted tumor spheroid dispersal but also stimulated proliferation and migration of endothelial cells. Interruption of cytokine signaling by CYT387 in vivo impaired the growth of an IKBKE-driven TNBC cell line and patient-derived xenografts (PDXs). A combination of CYT387 therapy with a MEK inhibitor was particularly effective, abrogating tumor growth and angiogenesis in an aggressive PDX model of TNBC. Together, these findings reveal that IKBKE-associated cytokine signaling promotes tumorigenicity of immune-driven TNBC and identify a potential therapeutic strategy using clinically available compounds.

Authors

Thanh U. Barbie, Gabriela Alexe, Amir R. Aref, Shunqiang Li, Zehua Zhu, Xiuli Zhang, Yu Imamura, Tran C. Thai, Ying Huang, Michaela Bowden, John Herndon, Travis J. Cohoon, Timothy Fleming, Pablo Tamayo, Jill P. Mesirov, Shuji Ogino, Kwok-Kin Wong, Matthew J. Ellis, William C. Hahn, David A. Barbie, William E. Gillanders

×

Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs
Emilie Degagné, Ashok Pandurangan, Padmavathi Bandhuvula, Ashok Kumar, Abeer Eltanawy, Meng Zhang, Yuko Yoshinaga, Mikhail Nefedov, Pieter J. de Jong, Loren G. Fong, Stephen G. Young, Robert Bittman, Yasmin Ahmedi, Julie D. Saba
Emilie Degagné, Ashok Pandurangan, Padmavathi Bandhuvula, Ashok Kumar, Abeer Eltanawy, Meng Zhang, Yuko Yoshinaga, Mikhail Nefedov, Pieter J. de Jong, Loren G. Fong, Stephen G. Young, Robert Bittman, Yasmin Ahmedi, Julie D. Saba
View: Text | PDF

Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs

  • Text
  • PDF
Abstract

Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL.

Authors

Emilie Degagné, Ashok Pandurangan, Padmavathi Bandhuvula, Ashok Kumar, Abeer Eltanawy, Meng Zhang, Yuko Yoshinaga, Mikhail Nefedov, Pieter J. de Jong, Loren G. Fong, Stephen G. Young, Robert Bittman, Yasmin Ahmedi, Julie D. Saba

×
  • ← Previous
  • 1
  • 2
  • …
  • 86
  • 87
  • 88
  • …
  • 138
  • 139
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
E2F8 keeps liver cancer at bay
Alain de Bruin, Gustavo Leone, and colleagues find that the E2F8-mediated transcriptional repression in the developing liver suppresses hepatocellular carcinoma later in life …
Published July 25, 2016
Scientific Show StopperOncology

AIDing and abetting UV-independent skin cancer
Taichiro Nonaka and colleagues find that AID plays a role in the development of inflammation-driven, non-UV skin cancer
Published March 14, 2016
Scientific Show StopperOncology

CD37 keeps B cell lymphoma at bay
Charlotte de Winde, Sharon Veenbergen, and colleagues demonstrate that loss of CD37 expression relieves SOCS3-mediated suppression of IL-6 signaling and supports the development of B cell lymphoma…
Published January 19, 2016
Scientific Show StopperOncology

Maintaining endometrial epithelial barrier function
Jessica Bowser and colleagues identify a mechanism by which loss of CD73 promotes endometrial cancer progression…
Published December 7, 2015
Scientific Show StopperOncology

Sleuthing out the cellular source of hepatocellular carcinoma
Xueru Mu, Regina Español-Suñer, and colleagues show that tumors in murine hepatocellular carcinoma models are derived from hepatocytes and not from other liver resident cells …
Published September 8, 2015
Scientific Show StopperOncology

Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology

Cancer cells fight off stress with ATF4
Souvik Dey, Carly Sayers, and colleagues reveal that activation of heme oxygenase 1 by ATF4 protects cancer cells from ECM detachment-induced death and promotes metastasis…
Published May 26, 2015
Scientific Show StopperOncology

Smothering Von Hippel-Lindau syndrome-associated phenotypes
Ana Metelo and colleagues demonstrate that specific inhibition of HIF2a ameliorates VHL-associated phenotypes and improves survival in a zebrafish model of disease…
Published April 13, 2015
Scientific Show StopperOncology

Blazing the trail for metastasis
Jill Westcott, Amanda Prechtl, and colleagues identify an epigenetically distinct population of breast cancer cells that promotes collective invasion…
Published April 6, 2015
Scientific Show StopperOncology

Dynamic focal adhesions
Wies van Roosmalen, Sylvia E. Le Dévédec, and colleagues screen for genes that alter cancer cell migration and demonstrate that SRPK1 promotes metastasis...
Published March 16, 2015
Scientific Show StopperOncology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts