The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in
Jenny Xie, Hyungjin Kim, Lisa A. Moreau, Shannon Puhalla, Judy Garber, Muthana Al Abo, Shunichi Takeda, Alan D. D’Andrea
Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic
Joachim Albers, Claudia Danzer, Markus Rechsteiner, Holger Lehmann, Laura P. Brandt, Tomas Hejhal, Antonella Catalano, Philipp Busenhart, Ana Filipa Gonçalves, Simone Brandt, Peter K. Bode, Beata Bode-Lesniewska, Peter J. Wild, Ian J. Frew
Multiple mechanisms have been described that confer BRAF inhibitor resistance to melanomas, yet the basis of this resistance remains undefined in a sizable portion of patient samples. Here, we characterized samples from a set of patients with melanoma that included individuals at baseline diagnosis, on BRAF inhibitor treatment, and with resistant tumors at both the protein and RNA levels. Using RNA and DNA sequencing, we identified known resistance-conferring mutations in 50% (6 of 12) of the resistant samples. In parallel, targeted proteomic analysis by protein array categorized the resistant samples into 3 stable groups, 2 of which were characterized by reactivation of MAPK signaling to different levels and 1 that was MAPK independent. The molecular relevance of these classifications identified in patients was supported by both mutation data and the similarity of resistance patterns that emerged during a co-clinical trial in a genetically engineered mouse (GEM) model of melanoma that recapitulates the development of BRAF inhibitor resistance. Additionally, we defined candidate biomarkers in pre- and early-treatment patient samples that have potential for predicting clinical responses. On the basis of these observations, we suggest that BRAF inhibitor–resistant melanomas can be actionably classified using protein expression patterns, even without identification of the underlying genetic alteration.
Lawrence N. Kwong, Genevieve M. Boland, Dennie T. Frederick, Timothy L. Helms, Ahmad T. Akid, John P. Miller, Shan Jiang, Zachary A. Cooper, Xingzhi Song, Sahil Seth, Jennifer Kamara, Alexei Protopopov, Gordon B. Mills, Keith T. Flaherty, Jennifer A. Wargo, Lynda Chin
Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2–driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer.
Subhamoy Dasgupta, Nagireddy Putluri, Weiwen Long, Bin Zhang, Jianghua Wang, Akash K. Kaushik, James M. Arnold, Salil K. Bhowmik, Erin Stashi, Christine A. Brennan, Kimal Rajapakshe, Cristian Coarfa, Nicholas Mitsiades, Michael M. Ittmann, Arul M. Chinnaiyan, Arun Sreekumar, Bert W. O’Malley
Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.
Yulong Chen, Masahiko Terajima, Yanan Yang, Li Sun, Young-Ho Ahn, Daniela Pankova, Daniel S. Puperi, Takeshi Watanabe, Min P. Kim, Shanda H. Blackmon, Jaime Rodriguez, Hui Liu, Carmen Behrens, Ignacio I. Wistuba, Rosalba Minelli, Kenneth L. Scott, Johannah Sanchez-Adams, Farshid Guilak, Debananda Pati, Nishan Thilaganathan, Alan R. Burns, Chad J. Creighton, Elisabeth D. Martinez, Tomasz Zal, K. Jane Grande-Allen, Mitsuo Yamauchi, Jonathan M. Kurie
Leukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Leukemia cells exhibit a dysregulated developmental program as the result of genetic and epigenetic alterations. Overexpression of the RNA-binding protein Musashi2 (
Sun-Mi Park, Mithat Gönen, Ly Vu, Gerard Minuesa, Patrick Tivnan, Trevor S. Barlowe, James Taggart, Yuheng Lu, Raquel P. Deering, Nir Hacohen, Maria E. Figueroa, Elisabeth Paietta, Hugo F. Fernandez, Martin S. Tallman, Ari Melnick, Ross Levine, Christina Leslie, Christopher J. Lengner, Michael G. Kharas
Signaling via the MyD88/IRAK pathway in T cells is indispensable for cell survival; however, it is not known whether this pathway functions in the progression of T acute lymphoblastic leukemia (T-ALL). Here, we determined that compared with thymic and peripheral T cells, T-ALL cells from patients have elevated levels of
Zhaoyang Li, Kenisha Younger, Ronald Gartenhaus, Ann Mary Joseph, Fang Hu, Maria R. Baer, Patrick Brown, Eduardo Davila
Patients with B cell precursor acute lymphoblastic leukemia (BPL) respond well to chemotherapy at initial diagnosis; however, therapeutic options are limited for individuals with BPL who relapse. Almost all BPL cells express CD19, and we recently cloned the gene encoding a natural ligand of the human CD19 receptor (CD19L). We hypothesized that fusion of CD19L to the soluble extracellular domain of proapoptotic TNF-related apoptosis-inducing ligand (sTRAIL) would markedly enhance the potency of sTRAIL and specifically induce BPL cell apoptosis due to membrane anchoring of sTRAIL and simultaneous activation of the CD19 and TRAIL receptor (TRAIL-R) apoptosis signaling pathways. Here, we demonstrate that recombinant human CD19L-sTRAIL was substantially more potent than sTRAIL and induced apoptosis in primary leukemia cells taken directly from BPL patients. CD19L-sTRAIL effectively targeted and eliminated in vivo clonogenic BPL xenograft cells, even at femtomolar-picomolar concentrations. In mice, CD19L-sTRAIL exhibited a more favorable pharmacokinetic (PK) profile than sTRAIL and was nontoxic at doses ranging from 32 fmol/kg to 3.2 pmol/kg. CD19L-sTRAIL showed potent in vivo antileukemic activity in NOD/SCID mouse xenograft models of relapsed and chemotherapy-resistant BPL at nontoxic fmol/kg dose levels. Together, these results suggest that recombinant human CD19L-sTRAIL has clinical potential as a biotherapeutic agent against BPL.
Fatih M. Uckun, Dorothea E. Myers, Sanjive Qazi, Zahide Ozer, Rebecca Rose, Osmond J. D’Cruz, Hong Ma
The gene encoding F-box protein FBXW7 is frequently mutated in many human cancers. Although most previous studies have focused on the tumor-suppressive capacity of FBXW7 in tumor cells themselves, we determined that FBXW7 in the host microenvironment also suppresses cancer metastasis. Deletion of
Kanae Yumimoto, Sayuri Akiyoshi, Hiroki Ueo, Yasuaki Sagara, Ichiro Onoyama, Hiroaki Ueo, Shinji Ohno, Masaki Mori, Koshi Mimori, Keiichi I. Nakayama
For a targeted cancer vaccine to be effective, the antigen of interest needs to be naturally processed and presented on MHC by the target cell or an antigen-presenting cell (APC) in the tumor stroma. The presence of these characteristics is often assumed based on animal models, evaluation of antigen-overexpressing APCs in vitro, or assays of material-consuming immune precipitation from fresh solid tissue. Here, we evaluated the use of an alternative approach that uses the proximity ligation assay (PLA) to identify the presentation of an MHC class II–restricted antigen in paraffin-embedded tissue sections from patients with brain tumors. This approach required a specific antibody directed against the epitope that was presented. We used an antibody that specifically binds an epitope of mutated isocitrate dehydrogenase type 1 (IDH1R132H), which is frequently expressed in gliomas and other types of tumors. In situ PLA showed that the IDH1R132H epitope colocalizes with MHC class II in IDH1R132H-mutated glioma tissue. Moreover, PLA demonstrated colocalization between the class II epitope-containing melanoma antigen New York esophageal 1 and MHC class II. Collectively, our data suggest that PLA may be a useful tool to acquire information on whether an antigen is presented in situ, and this technique has potential to guide clinical studies that use antigen-specific cancer immunotherapy.
Lukas Bunse, Theresa Schumacher, Felix Sahm, Stefan Pusch, Iris Oezen, Katharina Rauschenbach, Marina Gonzalez, Gergely Solecki, Matthias Osswald, David Capper, Benedikt Wiestler, Frank Winkler, Christel Herold-Mende, Andreas von Deimling, Wolfgang Wick, Michael Platten