Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest–like mesenchymal cell state and a more differentiated sympathetic adrenergic cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional cofactor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism, G/T, that affects a GATA motif in the first intron of LMO1. Here, we showed that WT zebrafish with the GATA genotype developed adrenergic neuroblastoma, while knock-in of the protective TATA allele at this locus reduced the penetrance of MYCN-driven tumors, which were restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrated that TATA/TATA tumors also exhibited a mesenchymal cell state and were low risk at diagnosis. Thus, conversion of the regulatory GATA to a TATA allele in the first intron of LMO1 reduced the neuroblastoma-initiation rate by preventing formation of the adrenergic cell state. This mechanism was conserved over 400 million years of evolution, separating zebrafish and humans.
Nina Weichert-Leahey, Hui Shi, Ting Tao, Derek A. Oldridge, Adam D. Durbin, Brian J. Abraham, Mark W. Zimmerman, Shizhen Zhu, Andrew C. Wood, Deepak Reyon, J. Keith Joung, Richard A. Young, Sharon J. Diskin, John M. Maris, A. Thomas Look
Deciphering the crosstalk between metabolic reprogramming and epigenetic regulation is a promising strategy for cancer therapy. In this study, we discovered that the gluconeogenic enzyme PCK1 fueled the generation of S-adenosylmethionine (SAM) through the serine synthesis pathway. The methyltransferase SUV39H1 catalyzed SAM, which served as a methyl donor to support H3K9me3 modification, leading to the suppression of the oncogene S100A11. Mechanistically, PCK1 deficiency-induced oncogenic activation of S100A11 was due to its interaction with AKT1, which upregulated PI3K/AKT signaling. Intriguingly, the progression of hepatocellular carcinoma (HCC) driven by PCK1 deficiency was suppressed by SAM supplement or S100A11 knockout in vivo and in vitro. These findings reveal the availability of key metabolite SAM as a bridge connecting the gluconeogenic enzyme PCK1 and H3K9 trimethylation in attenuating HCC progression, thus suggesting a potential therapeutic strategy against HCC.
Dongmei Gou, Rui Liu, Xiaoqun Shan, Haijun Deng, Chang Chen, Jin Xiang, Yi Liu, Qingzhu Gao, Zhi Li, Ailong Huang, Kai Wang, Ni Tang
Targeted therapies such as venetoclax (Bcl-2 inhibitor) have revolutionized the treatment of chronic lymphocytic leukemia (CLL). We previously reported that persister CLL cells in treated patients overexpress multiple anti-apoptotic proteins and display resistance to pro-apoptotic agents. Here, we demonstrated that multidrug resistant CLL cells in vivo exhibit apoptosis restriction at a premitochondrial level due to insufficient activation of the Bax and Bak proteins. Co-immunoprecipitation analyses with selective BH-domain antagonists revealed that the pleotropic pro-apoptotic protein (Bim) is prevented from activating Bax/Bak by “switching” interactions to other upregulated anti-apoptotic proteins (Mcl-1/Bcl-xL/Bcl-2). Hence, treatments that bypass Bax/Bak restriction are required to deplete these resistant cells in patients. Protein Phosphatase 2A (PP2A) contributes to oncogenesis and treatment resistance. We observed that a small molecule activator of PP2A (SMAP) induced cytotoxicity in multiple cancer cell lines and CLL samples, including multidrug resistant leukemia/lymphoma cells. The SMAP (DT-061) activated apoptosis in multidrug resistant CLL cells through induction of mitochondrial permeability transition pores (mPTP), independent of Bax/Bak. DT-061 inhibited the growth of wild type and Bax/Bak double knockout multidrug resistant CLL cells in a xenograft mouse model. Collectively, we discovered multidrug resistant CLL cells in patients, and validated a pharmacologically tractable pathway to deplete this reservoir.
Kallesh D. Jayappa, Brian Tran, Vicki L. Gordon, Christopher G. Morris, Shekhar Saha, Caroline C. Farrington, Caitlin M. O’Connor, Kaitin P. Zawacki, Krista M. Isaac, Mark Kester, Timothy P. Bender, Michael E. Williams, Craig A. Portell, Michael J. Weber, Goutham Narla
Neurofibromatosis Type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes >50% of the tumor dry weight. However, little is known about the mechanism underlying ECM deposition during neurofibroma development and treatment response. We performed a systematic investigation of ECM enrichment during plexiform neurofibroma (pNF) development, and identified basement membrane (BM) proteins, rather than major collagen isoforms, as the most upregulated ECM component. Following MEK inhibitor treatment, the ECM profile displayed an overall down-regulation signature, suggesting ECM reduction as a therapeutic benefit of MEK inhibition. Through these proteomic studies, TGF-β1 signaling was identified as playing a role in ECM dynamics. Indeed, TGF-β1 overexpression promoted pNF progression in vivo. Furthermore, by integrating single-cell RNA-sequencing, we found that immune cells including macrophages and T cells produce TGF-β1 to induce Schwann cells to produce and deposit BM proteins for ECM remodeling. Following Nf1 loss, neoplastic Schwann cells further increased BM protein deposition in response to TGF-β1. Our data delineate the regulation governing ECM dynamics in pNF and suggest that BM proteins could serve as markers for disease diagnosis and treatment response.
Chunhui Jiang, Ashwani Kumar, Ze Yu, Tracey Shipman, Yong Wang, Renee M. McKay, Chao Xing, Lu Q. Le
Seizures are a frequent complication of adult-type diffuse gliomas, and are often difficult to control with medications. Gliomas with mutations in isocitrate dehydrogenase 1 or 2 (IDHmut) are more likely than IDH wild-type (IDHwt) gliomas to cause seizures as part of their initial clinical presentation. However, whether IDHmut is also associated with seizures during the remaining disease course, and whether IDHmut inhibitors can reduce seizure risk, are unclear. Clinical multivariable analyses showed that preoperative seizures, glioma location, extent of resection, and glioma molecular subtype (including IDHmut status) all contribute to postoperative seizure risk in adult-type diffuse glioma patients, and that postoperative seizures are often associated with tumor recurrence. Experimentally, the metabolic product of IDHmut, D-2-hydroxyglutarate, rapidly synchronizes neuronal spike firing in a seizure-like manner, but only when nonneoplastic glial cells are present. In vitro and in vivo models can recapitulate IDHmut glioma-associated seizures, and IDHmut inhibitors currently being evaluated in glioma clinical trials inhibit seizures in those models, independent of their effects on glioma growth. These data show that postoperative seizure risk in adult-type diffuse gliomas varies in large part by molecular subtype, and that IDHmut inhibitors could play a key role in mitigating such risk in IDHmut glioma patients.
Michael Drumm, Wenxia Wang, Thomas K. Sears, Kirsten Bell-Burdett, Rodrigo Javier, Kristen Y. Cotton, Brynna T. Webb, Kayla T. Byrne, Dusten Unruh, Vineeth Thirunavu, Jordain Walshon, Alicia Steffens, Kathleen McCortney, Rimas V. Lukas, Joanna J. Phillips, Esraa Mohamed, John D. Finan, Lucas Santana-Santos, Amy B. Heimberger, Colin K. Franz, Jonathan E. Kurz, Jessica W. Templer, Geoffrey T. Swanson, Craig Horbinski
The deadliest anaplastic thyroid cancer (ATC) often transforms from indolent differentiated thyroid cancer (DTC); however, the complex intra-tumor transformation process is poorly understood. We investigated an anaplastic transformation model by dissecting both cell lineage and cell fate transitions using single cell transcriptomes and genetic alteration data from patients with different subtypes of thyroid cancer. The resulting spectrum of ATC transformation included stress-responsive DTC cells, inflammatory ATC cells (iATCs), mitotic-defective ATC cells and extended all the way to mesenchymal ATC cells (mATCs). Further, our analysis identified two important milestones: 1) a diploid stage, where iATC cells were diploids with inflammatory phenotypes, and 2) an aneuploid stage, where mATCs gained aneuploid genomes and mesenchymal phenotypes producing excessive collagens and collagen-interacting receptors. In parallel, cancer-associated-fibroblasts showed strong interactions among mesenchymal cell-types, macrophages shifted from M1 to M2 states, and T cells reprogrammed from cytotoxic to exhausted states, highlighting new therapeutic opportunities for ATC.
Lina Lu, Jennifer Rui Wang, Ying C. Henderson, Shanshan Bai, Jie Yang, Min Hu, Cheng-Kai Shiau, Timothy Y. Pan, Yuanqing Yan, Tuan M. Tran, Jianzhuo Li, Rachel Kieser, Xiao Zhao, Jiping Wang, Roza Nurieva, Michelle D. Williams, Maria E. Cabanillas, Ramona Dadu, Naifa Busaidy, Mark Zafereo, Nicholas Navin, Stephen Y. Lai, Ruli Gao
Germline or somatic loss-of-function mutations of fumarate hydratase (FH) predispose patients to an aggressive form of renal cell carcinoma (RCC). Since other than tumor resection, there is no effective therapy for metastatic FH-deficient RCC, an accurate method for early diagnosis is needed. Although MRI or CT scans are offered, they cannot differentiate FH-deficient tumors from other RCCs. Therefore, finding noninvasive plasma biomarkers suitable for rapid diagnosis, screening and surveillance would improve clinical outcomes. Taking advantage of the robust metabolic rewiring that occurs in FH-deficient cells, we performed plasma metabolomics analysis and identified two tumor-derived metabolites, succinyl-adenosine and succinic-cysteine, as outstanding plasma biomarkers for early diagnosis (receiver operating characteristic area under curve (ROCAUC) = 0.98). These two molecules reliably reflected the FH mutation status and tumor mass. We further identified the enzymatic cooperativity by which these biomarkers are produced within the tumor microenvironment. Longitudinal monitoring of patients demonstrated that these circulating biomarkers can be used for reporting on treatment efficacy and identifying recurrent or metastatic tumors.
Liang Zheng, Zi-Ran Zhu, Tal Sneh, Weituo Zhang, Zao-Yu Wang, Guang-Yu Wu, Wei He, Hong-Gang Qi, Hang Wang, Xiao-Yu Wu, Jonatan Fernández-García, Ifat Abramovich, Yun-Ze Xu, Jin Zhang, Eyal Gottlieb
Programmed death ligand 1 (PD-L1) is an immune checkpoint protein frequently expressed in human cancers, which contributes to immune evasion through its binding to PD-1 on activated T cells. Unveiling the mechanisms underlying PD-L1 expression is essential for understanding the impacts of immunosuppressive microenvironment, and also crucial for the purpose of re-boosting anti-tumour immunity. However, how PD-L1 is regulated, particularly at translational levels, remains largely unknown. Here, we discovered that a lncRNA, HIF-1α inhibitor at translation level (HITT), was transactivated by E2F1 under interferon-γ stimulation. It bound and co-ordinated with Regulator of G Protein Signalling 2 (RGS2) in binding to the 5ʹ-untranslated region (UTR) of PD-L1, resulting in reduced PD-L1 translation. HITT expression enhanced T cell-mediated cytotoxicity both in vitro and in vivo in a PD-L1 dependent manner. The clinical correlation between HITT/PD-L1, RGS2/PD-L1 expression was also detected in breast cancer tissues. Together, these findings demonstrate the role of HITT in antitumour T cell immunity, highlighting activation of HITT as a potential therapeutic strategy to enhance cancer immunotherapy.
Qingyu Lin, Tong Liu, Xingwen Wang, Guixue Hou, Zhiyuan Xiang, Wenxin Zhang, Shanliang Zheng, Dong Zhao, Qibin Leng, Xiaoshi Zhang, Minqiao Lu, Tianqi Guan, Hao Liu, Ying Hu
After androgen deprivation, prostate cancer frequently becomes castration resistant (CRPC), with intratumoral androgen production from extragonadal precursors that activate the androgen receptor pathway. 3β-Hydroxysteroid dehydrogenase-1 (3βHSD1) is the rate-limiting enzyme for extragonadal androgen synthesis, which together lead to CRPC. Here, we show that cancer-associated fibroblasts (CAFs) increased epithelial 3βHSD1 expression, induced androgen synthesis, activated the androgen receptor, and induced CRPC. Unbiased metabolomics revealed that CAF-secreted glucosamine specifically induced 3βHSD1. CAFs induced higher GlcNAcylation in cancer cells and elevated expression of the transcription factor Elk1, which induced higher 3βHSD1 expression and activity. Elk1 genetic ablation in cancer epithelial cells suppressed CAF-induced androgen biosynthesis in vivo. In patient samples, multiplex fluorescent imaging showed that tumor cells expressed more 3βHSD1 and Elk1 in CAF-enriched areas compared with CAF-deficient areas. Our findings suggest that CAF-secreted glucosamine increases GlcNAcylation in prostate cancer cells, promoting Elk1-induced HSD3B1 transcription, which upregulates de novo intratumoral androgen synthesis to overcome castration.
Di Cui, Jianneng Li, Ziqi Zhu, Michael Berk, Aimalie Hardaway, Jeffrey McManus, Yoon-Mi Chung, Mohammad Alyamani, Shelley Valle, Ritika Tiwari, Bangmin Han, Maryam Goudarzi, Belinda Willard, Nima Sharifi
Patients with small cell lung cancer (SCLC) generally have a poor prognosis and a median overall survival of only about 13 months, indicating the urgent need for novel therapies. Delta-like protein 3 (DLL3) has been identified as a tumor-specific cell surface marker on neuroendocrine cancers including SCLC. In this study, we developed a chimeric antigen receptor (CAR) against DLL3 that displays antitumor efficacy in xenograft and murine SCLC models. CAR T cell expression of the proinflammatory cytokine interleukin-18 (IL-18) greatly enhanced the potency of DLL3-targeting CAR T cell therapy. In a murine metastatic SCLC model, IL-18 production increased the activation of both CAR T cells and endogenous tumor-infiltrating lymphocytes. We also observed an increased infiltration, repolarization and activation of antigen-presenting cells. Lastly, human IL-18-secreting anti-DLL3 CAR T cells showed an increased memory phenotype, less exhaustion and induced durable responses in multiple SCLC models, an effect that could be further enhanced with anti-PD-1 blockade. Together, these results define DLL3-targeting CAR T cells that produce IL-18 as a promising novel strategy against DLL3-expressing solid tumors.
Janneke E. Jaspers, Jonathan F. Khan, William D. Godfrey, Andrea V. Lopez, Metamia Ciampricotti, Charles M. Rudin, Renier J. Brentjens