Tumor radioresponsiveness depends on endothelial cell death, which leads in turn to tumor hypoxia. Radiation-induced hypoxia was recently shown to trigger tumor radioresistance by activating angiogenesis through hypoxia-inducible factor 1–regulated (HIF-1–regulated) cytokines. We show here that combining targeted radioiodide therapy with angiogenic inhibitors, such as canstatin, enhances direct tumor cell apoptosis, thereby overcoming radio-induced HIF-1–dependent tumor survival pathways in vitro and in vivo. We found that following dual therapy, HIF-1α increases the activity of the canstatin-induced αvβ5 signaling tumor apoptotic pathway and concomitantly abrogates mitotic checkpoint and tetraploidy triggered by radiation. Apoptosis in conjunction with mitotic catastrophe leads to lethal tumor damage. We discovered that HIF-1 displays a radiosensitizing activity that is highly dependent on treatment modalities by regulating key apoptotic molecular pathways. Our findings therefore support a crucial role for angiogenesis inhibitors in shifting the fate of radiation-induced HIF-1α activity from hypoxia-induced tumor radioresistance to hypoxia-induced tumor apoptosis. This study provides a basis for developing new biology-based clinically relevant strategies to improve the efficacy of radiation oncology, using HIF-1 as an ally for cancer therapy.
Claire Magnon, Paule Opolon, Marcel Ricard, Elisabeth Connault, Patrice Ardouin, Ariane Galaup, Didier Métivier, Jean-Michel Bidart, Stéphane Germain, Michel Perricaudet, Martin Schlumberger
Granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances protection against tumors and infections, but GM-CSF–deficient mice develop inflammatory disease. Here we show that GM-CSF is required for the expression of milk fat globule EGF 8 (MFG-E8) in antigen-presenting cells, and that MFG-E8–mediated uptake of apoptotic cells is a key determinant of GM-CSF–triggered tolerance and immunity. Upon exposure to apoptotic cells, GM-CSF–deficient antigen-presenting cells (APCs) produce an altered cytokine profile that results in decreased Tregs and increased Th1 cells, whereas concurrent ablation of IFN-γ promotes Th17 cells. In wild-type mice, MFG-E8 attenuates the vaccination activity of GM-CSF–secreting tumor cells through Treg induction, whereas a dominant-negative MFG-E8 mutant potentiates GM-CSF–stimulated tumor destruction through Treg inhibition. These findings clarify the immunoregulatory effects of apoptotic cells and suggest new therapeutic strategies to modulate CD4+ T cell subsets in cancer and autoimmunity.
Masahisa Jinushi, Yukoh Nakazaki, Michael Dougan, Daniel R. Carrasco, Martin Mihm, Glenn Dranoff
We have developed an integrated, multidisciplinary methodology, termed systems pathology, to generate highly accurate predictive tools for complex diseases, using prostate cancer for the prototype. To predict the recurrence of prostate cancer following radical prostatectomy, defined by rising serum prostate-specific antigen (PSA), we used machine learning to develop a model based on clinicopathologic variables, histologic tumor characteristics, and cell type–specific quantification of biomarkers. The initial study was based on a cohort of 323 patients and identified that high levels of the androgen receptor, as detected by immunohistochemistry, were associated with a reduced time to PSA recurrence. The model predicted recurrence with high accuracy, as indicated by a concordance index in the validation set of 0.82, sensitivity of 96%, and specificity of 72%. We extended this approach, employing quantitative multiplex immunofluorescence, on an expanded cohort of 682 patients. The model again predicted PSA recurrence with high accuracy, concordance index being 0.77, sensitivity of 77% and specificity of 72%. The androgen receptor was selected, along with 5 clinicopathologic features (seminal vesicle invasion, biopsy Gleason score, extracapsular extension, preoperative PSA, and dominant prostatectomy Gleason grade) as well as 2 histologic features (texture of epithelial nuclei and cytoplasm in tumor only regions). This robust platform has broad applications in patient diagnosis, treatment management, and prognostication.
Carlos Cordon-Cardo, Angeliki Kotsianti, David A. Verbel, Mikhail Teverovskiy, Paola Capodieci, Stefan Hamann, Yusuf Jeffers, Mark Clayton, Faysal Elkhettabi, Faisal M. Khan, Marina Sapir, Valentina Bayer-Zubek, Yevgen Vengrenyuk, Stephen Fogarsi, Olivier Saidi, Victor E. Reuter, Howard I. Scher, Michael W. Kattan, Fernando J. Bianco Jr., Thomas M. Wheeler, Gustavo E. Ayala, Peter T. Scardino, Michael J. Donovan
Although a causal role of genetic alterations in human cancer is well established, it is still unclear whether dietary fat can modulate cancer risk in a predisposed population. Epidemiological studies suggest that diets rich in omega-3 polyunsaturated fatty acids reduce cancer incidence. To determine the influence of fatty acids on prostate cancer risk in animals with a defined genetic lesion, we used prostate-specific Pten-knockout mice, an immune-competent, orthotopic prostate cancer model, and diets with defined polyunsaturated fatty acid levels. We found that omega-3 fatty acids reduced prostate tumor growth, slowed histopathological progression, and increased survival, whereas omega-6 fatty acids had opposite effects. Introducing an omega-3 desaturase, which converts omega-6 to omega-3 fatty acids, into the Pten-knockout mice reduced tumor growth similarly to the omega-3 diet. Tumors from mice on the omega-3 diet had lower proportions of phosphorylated Bad and higher apoptotic indexes compared with those from mice on omega-6 diet. Knockdown of Bad eliminated omega-3–induced cell death, and introduction of exogenous Bad restored the sensitivity to omega-3 fatty acids. Our data suggest that modulation of prostate cancer development by polyunsaturated fatty acids is mediated in part through Bad-dependent apoptosis. This study highlights the importance of gene-diet interactions in prostate cancer.
Isabelle M. Berquin, Younong Min, Ruping Wu, Jiansheng Wu, Donna Perry, J. Mark Cline, Mike J. Thomas, Todd Thornburg, George Kulik, Adrienne Smith, Iris J. Edwards, Ralph D’Agostino Jr., Hao Zhang, Hong Wu, Jing X. Kang, Yong Q. Chen
Retinoic acid receptors (RARs) are members of the nuclear hormone receptor family and regulate the proliferation and differentiation of multiple different cell types, including promyelocytic leukemia cells. Here we describe a biochemical/functional interaction between the Ca2+/calmodulin–dependent protein kinases (CaMKs) and RARs that modulates the differentiation of myeloid leukemia cells. We observe that CaMKIIγ is the CaMK that is predominantly expressed in myeloid cells. CaMKII inhibits RAR transcriptional activity, and this enzyme directly interacts with RAR through a CaMKII LxxLL binding motif. CaMKIIγ phosphorylates RARα both in vitro and in vivo, and this phosphorylation inhibits RARα activity by enhancing its interaction with transcriptional corepressors. In myeloid cell lines, CaMKIIγ localizes to RAR target sites within myeloid gene promoters but dissociates from the promoter upon retinoic acid–induced myeloid cell differentiation. KN62, a pharmacological inhibitor of the CaMKs, enhances the terminal differentiation of myeloid leukemia cell lines, and this is associated with a reduction in activated (autophosphorylated) CaMKII in the terminally differentiating cells. These observations reveal a significant cross-talk between Ca2+ and retinoic acid signaling pathways that regulates the differentiation of myeloid leukemia cells, and they suggest that CaMKIIγ may provide a new therapeutic target for the treatment of certain human myeloid leukemias.
Jutong Si, LeMoyne Mueller, Steven J. Collins
Breast cancers lacking estrogen and progesterone receptor expression and Her2 amplification exhibit distinct gene expression profiles and clinical features, and they comprise the majority of BRCA1-associated tumors. Here we demonstrated that the p53 family member p63 controls a pathway for p73-dependent cisplatin sensitivity specific to these “triple-negative” tumors. In vivo, ΔNp63 and TAp73 isoforms were coexpressed exclusively within a subset of triple-negative primary breast cancers that commonly exhibited mutational inactivation of p53. The ΔNp63α isoform promoted survival of breast cancer cells by binding TAp73 and thereby inhibiting its proapoptotic activity. Consequently, inhibition of p63 by RNA interference led to TAp73-dependent induction of proapoptotic Bcl-2 family members and apoptosis. Breast cancer cells expressing ΔNp63α and TAp73 exhibited cisplatin sensitivity that was uniquely dependent on TAp73. Thus, in response to treatment with cisplatin, but not other chemotherapeutic agents, TAp73 underwent c-Abl–dependent phosphorylation, which promoted dissociation of the ΔNp63α/TAp73 protein complex, TAp73-dependent transcription of proapoptotic Bcl-2 family members, and apoptosis. These findings define p63 as a survival factor in a subset of breast cancers; furthermore, they provide what we believe to be a novel mechanism for cisplatin sensitivity in these triple-negative cancers, and they suggest that such cancers may share the cisplatin sensitivity of BRCA1-associated tumors.
Chee-Onn Leong, Nick Vidnovic, Maurice Phillip DeYoung, Dennis Sgroi, Leif W. Ellisen
The Fanconi anemia (FA) pathway maintains genomic stability in replicating cells. Some sporadic breast, ovarian, pancreatic, and hematological tumors are deficient in FA pathway function, resulting in sensitivity to DNA-damaging agents. FA pathway dysfunction in these tumors may result in hyperdependence on alternative DNA repair pathways that could be targeted as a treatment strategy. We used a high-throughput siRNA screening approach that identified ataxia telangiectasia mutated (ATM) as a critical kinase for FA pathway–deficient human fibroblasts. Human fibroblasts and murine embryonic fibroblasts deficient for the FA pathway were observed to have constitutive ATM activation and Fancg–/–Atm–/– mice were found to be nonviable. Abrogation of ATM function in FA pathway–deficient cells resulted in DNA breakage, cell cycle arrest, and apoptotic cell death. Moreover, Fanconi anemia complementation group G– (FANCG-) and FANCC-deficient pancreatic tumor lines were more sensitive to the ATM inhibitor KU-55933 than isogenic corrected lines. These data suggest that ATM and FA genes function in parallel and compensatory roles to maintain genomic integrity and cell viability. Pharmaceutical inhibition of ATM may have a role in the treatment of FA pathway–deficient human cancers.
Richard D. Kennedy, Clark C. Chen, Patricia Stuckert, Elyse M. Archila, Michelle A. De la Vega, Lisa A. Moreau, Akiko Shimamura, Alan D. D’Andrea
The tumor suppressor p53 is a potent inducer of tumor cell death, and strategies exist to exploit p53 for therapeutic gain. However, because about half of human cancers contain mutant p53, application of these strategies is restricted. p53 family members, in particular p73, are in many ways functional paralogs of p53, but are rarely mutated in cancer. Methods for specific activation of p73, however, remain to be elucidated. We describe here a minimal p53-derived apoptotic peptide that induced death in multiple cell types regardless of p53 status. While unable to activate gene expression directly, this peptide retained the capacity to bind iASPP — a common negative regulator of p53 family members. Concordantly, in p53-null cells, this peptide derepressed p73, causing p73-mediated gene activation and death. Moreover, systemic nanoparticle delivery of a transgene expressing this peptide caused tumor regression in vivo via p73. This study therefore heralds what we believe to be the first strategy to directly and selectively activate p73 therapeutically and may lead to the development of broadly applicable agents for the treatment of malignant disease.
Helen S. Bell, Christine Dufes, Jim O’Prey, Diane Crighton, Daniele Bergamaschi, Xin Lu, Andreas G. Schätzlein, Karen H. Vousden, Kevin M. Ryan
A significant challenge to efforts aimed at inducing effective antitumor immune responses is that CD8+ T cells, which play a prominent role in these responses, may be unable to respond to tumors that lack costimulatory signals and that are protected by an immune suppressive environment such as that mediated by TGF-β produced by tumor cells themselves or by infiltrating Tregs, often resulting in tolerance or anergy of tumor-specific T cells. Here we show that the in vitro activation of Cblb–/– CD8+ T cells does not depend on CD28 costimulation and is resistant to TGF-β suppression. In vivo studies further demonstrated that Cblb–/– mice, but not WT controls, efficiently rejected inoculated E.G7 and EL4 lymphomas that did not express B7 ligands and that introduction of the Cblb–/– mutation into tumor-prone ataxia telangiectasia mutated–deficient mice markedly reduced the incidence of spontaneous thymic lymphomas. Immunohistological study showed that E.G7 tumors from Cblb–/– mice contained massively infiltrating CD8+ T cells. Adoptive transfer of purified Cblb–/– CD8+ T cells into E.G7 tumor-bearing mice led to efficient eradication of established tumors. Thus, our data indicate that ablation of Cbl-b can be an efficient strategy for eliciting immune responses against both inoculated and spontaneous tumors.
Jeffrey Y. Chiang, Ihn Kyung Jang, Richard Hodes, Hua Gu
Because of their low asparagine synthetase (ASNS) expression and asparagine biosynthesis, acute lymphoblastic leukemia (ALL) cells are exquisitely sensitive to asparagine depletion. Consequently, asparaginase is a major component of ALL therapy, but the mechanisms regulating the susceptibility of leukemic cells to this agent are unclear. In 288 children with ALL, cellular ASNS expression was more likely to be high in T-lineage ALL and low in B-lineage ALL with TEL-AML1 or hyperdiploidy. However, ASNS expression levels in bone marrow–derived mesenchymal cells (MSCs), which form the microenvironment where leukemic cells grow, were on average 20 times higher than those in ALL cells. MSCs protected ALL cells from asparaginase cytotoxicity in coculture experiments. This protective effect correlated with levels of ASNS expression: downregulation by RNA interference decreased the capacity of MSCs to protect ALL cells from asparaginase, whereas enforced ASNS expression conferred enhanced protection. Asparagine secretion by MSCs was directly related to their ASNS expression levels, suggesting a mechanism — increased concentrations of asparagine in the leukemic cell microenvironment — for the protective effects we observed. These results provide what we believe to be a new basis for understanding asparaginase resistance in ALL and indicate that MSC niches in the bone marrow can form a safe haven for leukemic cells.
Shotaro Iwamoto, Keichiro Mihara, James R. Downing, Ching-Hon Pui, Dario Campana