Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neuroscience

  • 649 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 39
  • 40
  • 41
  • …
  • 64
  • 65
  • Next →
Serine 421 regulates mutant huntingtin toxicity and clearance in mice
Ian H. Kratter, … , Eliezer Masliah, Steven Finkbeiner
Ian H. Kratter, … , Eliezer Masliah, Steven Finkbeiner
Published August 15, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI80339.
View: Text | PDF

Serine 421 regulates mutant huntingtin toxicity and clearance in mice

  • Text
  • PDF
Abstract

Huntington’s disease (HD) is a progressive, adult-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the N-terminal region of the protein huntingtin (HTT). There are no cures or disease-modifying therapies for HD. HTT has a highly conserved Akt phosphorylation site at serine 421, and prior work in HD models found that phosphorylation at S421 (S421-P) diminishes the toxicity of mutant HTT (mHTT) fragments in neuronal cultures. However, whether S421-P affects the toxicity of mHTT in vivo remains unknown. In this work, we used murine models to investigate the role of S421-P in HTT-induced neurodegeneration. Specifically, we mutated the human mHTT gene within a BAC to express either an aspartic acid or an alanine at position 421, mimicking tonic phosphorylation (mHTT-S421D mice) or preventing phosphorylation (mHTT-S421A mice), respectively. Mimicking HTT phosphorylation strongly ameliorated mHTT-induced behavioral dysfunction and striatal neurodegeneration, whereas neuronal dysfunction persisted when S421 phosphorylation was blocked. We found that S421 phosphorylation mitigates neurodegeneration by increasing proteasome-dependent turnover of mHTT and reducing the presence of a toxic mHTT conformer. These data indicate that S421 is a potent modifier of mHTT toxicity and offer in vivo validation for S421 as a therapeutic target in HD.

Authors

Ian H. Kratter, Hengameh Zahed, Alice Lau, Andrey S. Tsvetkov, Aaron C. Daub, Kurt F. Weiberth, Xiaofeng Gu, Frédéric Saudou, Sandrine Humbert, X. William Yang, Alex Osmand, Joan S. Steffan, Eliezer Masliah, Steven Finkbeiner

×

Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration
Saurav Brahmachari, … , Ted M. Dawson, Han Seok Ko
Saurav Brahmachari, … , Ted M. Dawson, Han Seok Ko
Published June 27, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85456.
View: Text | PDF

Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration

  • Text
  • PDF
Abstract

Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein–induced neuropathology. In mice expressing a human α-synucleinopathy–associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein–induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies.

Authors

Saurav Brahmachari, Preston Ge, Su Hyun Lee, Donghoon Kim, Senthilkumar S. Karuppagounder, Manoj Kumar, Xiaobo Mao, Yunjong Lee, Olga Pletnikova, Juan C. Troncoso, Valina L. Dawson, Ted M. Dawson, Han Seok Ko

×

Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions
Martina Absinta, … , Irene C.M. Cortese, Daniel S. Reich
Martina Absinta, … , Irene C.M. Cortese, Daniel S. Reich
Published June 6, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86198.
View: Text | PDF

Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions

  • Text
  • PDF
Abstract

BACKGROUND. In some active multiple sclerosis (MS) lesions, a strong immune reaction at the lesion edge may contain growth and thereby isolate the lesion from the surrounding parenchyma. Our previous studies suggest that this process involves opening of the blood-brain barrier in capillaries at the lesion edge, seen on MRI as centripetal contrast enhancement and a colocalized phase rim. We hypothesized that using these features to characterize early lesion evolution will allow in vivo tracking of tissue degeneration and/or repair, thus improving the evaluation of potential therapies for chronic active lesions.

METHODS. Centripetally and centrifugally enhancing lesions were studied in 17 patients with MS using 7-tesla MRI. High-resolution, susceptibility-weighted, T1-weighted (before/after gadolinium), and dynamic contrast–enhanced scans were acquired at baseline and months 1, 3, 6, and 12. For each lesion, time evolution of the phase rim, lesion volume, and T1 hypointensity were assessed. In autopsies of 3 progressive MS cases, the histopathology of the phase rim was determined.

RESULTS. In centripetal lesions, a phase rim colocalized with initial contrast enhancement. In 12 of 22, this phase rim persisted after enhancement resolved. Compared with centripetal lesions with transient rim, those with persistent rim had less volume shrinkage and became more T1 hypointense between months 3 and 12. No centrifugal lesions developed phase rims at any time point. Pathologically, persistent rims corresponded to an iron-laden inflammatory myeloid cell population at the edge of chronic demyelinated lesions.

CONCLUSION. In early lesion evolution, a persistent phase rim in lesions that shrink least and become more T1 hypointense over time suggests that the rim might mark failure of early lesion repair and/or irreversible tissue damage. In later stages of MS, phase rim lesions continue to smolder, exerting detrimental effects on affected brain tissue.

TRIAL REGISTRATION. NCT00001248.

FUNDING. The Intramural Research Program of NINDS supported this study.

Authors

Martina Absinta, Pascal Sati, Matthew Schindler, Emily C. Leibovitch, Joan Ohayon, Tianxia Wu, Alessandro Meani, Massimo Filippi, Steven Jacobson, Irene C.M. Cortese, Daniel S. Reich

×

GABA interneurons mediate the rapid antidepressant-like effects of scopolamine
Eric S. Wohleb, … , Meenakshi Alreja, Ronald S. Duman
Eric S. Wohleb, … , Meenakshi Alreja, Ronald S. Duman
Published June 6, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85033.
View: Text | PDF

GABA interneurons mediate the rapid antidepressant-like effects of scopolamine

  • Text
  • PDF
Abstract

Major depressive disorder (MDD) is a recurring psychiatric illness that causes substantial health and socioeconomic burdens. Clinical reports have revealed that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, produces rapid antidepressant effects in individuals with MDD. Preclinical models suggest that these rapid antidepressant effects can be recapitulated with blockade of M1-type muscarinic acetylcholine receptors (M1-AChR); however, the cellular mechanisms underlying activity-dependent synaptic and behavioral responses to scopolamine have not been determined. Here, we demonstrate that the antidepressant-like effects of scopolamine are mediated by GABA interneurons in the medial prefrontal cortex (mPFC). Both GABAergic (GAD67+) interneurons and glutamatergic (CaMKII+) interneurons in the mPFC expressed M1-AChR. In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine. Immunohistology and electrophysiology showed that somatostatin (SST) interneurons in the mPFC express M1-AChR at higher levels than parvalbumin interneurons. Moreover, knockdown of M1-AChR in SST interneurons in the mPFC demonstrated that M1-AChR expression in these neurons is required for the rapid antidepressant-like effects of scopolamine. These data indicate that SST interneurons in the mPFC are a promising pharmacological target for developing rapid-acting antidepressant therapies.

Authors

Eric S. Wohleb, Min Wu, Danielle M. Gerhard, Seth R. Taylor, Marina R. Picciotto, Meenakshi Alreja, Ronald S. Duman

×

Phosphorylation state–dependent modulation of spinal glycine receptors alleviates inflammatory pain
Mario A. Acuña, … , Pierre-Jean Corringer, Hanns Ulrich Zeilhofer
Mario A. Acuña, … , Pierre-Jean Corringer, Hanns Ulrich Zeilhofer
Published June 6, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83817.
View: Text | PDF

Phosphorylation state–dependent modulation of spinal glycine receptors alleviates inflammatory pain

  • Text
  • PDF
Abstract

Diminished inhibitory neurotransmission in the superficial dorsal horn of the spinal cord is thought to contribute to chronic pain. In inflammatory pain, reductions in synaptic inhibition occur partially through prostaglandin E2- (PGE2-) and PKA-dependent phosphorylation of a specific subtype of glycine receptors (GlyRs) that contain α3 subunits. Here, we demonstrated that 2,6-di-tert-butylphenol (2,6-DTBP), a nonanesthetic propofol derivative, reverses inflammation-mediated disinhibition through a specific interaction with heteromeric αβGlyRs containing phosphorylated α3 subunits. We expressed mutant GlyRs in HEK293T cells, and electrophysiological analyses of these receptors showed that 2,6-DTBP interacted with a conserved phenylalanine residue in the membrane-associated stretch between transmembrane regions 3 and 4 of the GlyR α3 subunit. In native murine spinal cord tissue, 2,6-DTBP modulated synaptic, presumably αβ heteromeric, GlyRs only after priming with PGE2. This observation is consistent with results obtained from molecular modeling of the α-β subunit interface and suggests that in α3βGlyRs, the binding site is accessible to 2,6-DTBP only after PKA-dependent phosphorylation. In murine models of inflammatory pain, 2,6-DTBP reduced inflammatory hyperalgesia in an α3GlyR-dependent manner. Together, our data thus establish that selective potentiation of GlyR function is a promising strategy against chronic inflammatory pain and that, to our knowledge, 2,6-DTBP has a unique pharmacological profile that favors an interaction with GlyRs that have been primed by peripheral inflammation.

Authors

Mario A. Acuña, Gonzalo E. Yévenes, William T. Ralvenius, Dietmar Benke, Alessandra Di Lio, Cesar O. Lara, Braulio Muñoz, Carlos F. Burgos, Gustavo Moraga-Cid, Pierre-Jean Corringer, Hanns Ulrich Zeilhofer

×

Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis–like disease
Elaheh Ekhtiari Bidhendi, … , Stefan L. Marklund, Thomas Brännström
Elaheh Ekhtiari Bidhendi, … , Stefan L. Marklund, Thomas Brännström
Published May 3, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84360.
View: Text | PDF

Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis–like disease

  • Text
  • PDF
Abstract

Amyotrophic lateral sclerosis (ALS) is an adult-onset degeneration of motor neurons that is commonly caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Both patients and Tg mice expressing mutant human SOD1 (hSOD1) develop aggregates of unknown importance. In Tg mice, 2 different strains of hSOD1 aggregates (denoted A and B) can arise; however, the role of these aggregates in disease pathogenesis has not been fully characterized. Here, minute amounts of strain A and B hSOD1 aggregate seeds that were prepared by centrifugation through a density cushion were inoculated into lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg. Mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which is 200 days earlier than for mice that had not been inoculated or were given a control preparation. Concomitantly, exponentially growing strain A and B hSOD1 aggregations propagated rostrally throughout the spinal cord and brainstem. The phenotypes provoked by the A and B strains differed regarding progression rates, distribution, end-stage aggregate levels, and histopathology. Together, our data indicate that the aggregate strains are prions that transmit a templated, spreading aggregation of hSOD1, resulting in a fatal ALS-like disease.

Authors

Elaheh Ekhtiari Bidhendi, Johan Bergh, Per Zetterström, Peter M. Andersen, Stefan L. Marklund, Thomas Brännström

×

Amyloid precursor protein–mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration
Wei Xu, … , William C. Mobley, Chengbiao Wu
Wei Xu, … , William C. Mobley, Chengbiao Wu
Published April 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI82409.
View: Text | PDF

Amyloid precursor protein–mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration

  • Text
  • PDF
Abstract

The endosome/lysosome pathway is disrupted early in the course of both Alzheimer’s disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS.

Authors

Wei Xu, April M. Weissmiller, Joseph A. White II, Fang Fang, Xinyi Wang, Yiwen Wu, Matthew L. Pearn, Xiaobei Zhao, Mariko Sawa, Shengdi Chen, Shermali Gunawardena, Jianqing Ding, William C. Mobley, Chengbiao Wu

×

Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model
Keisuke Kitakaze, … , Hitoshi Sakuraba, Kohji Itoh
Keisuke Kitakaze, … , Hitoshi Sakuraba, Kohji Itoh
Published March 28, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85300.
View: Text | PDF

Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model

  • Text
  • PDF
Abstract

GM2 gangliosidoses, including Tay-Sachs and Sandhoff diseases, are neurodegenerative lysosomal storage diseases that are caused by deficiency of β-hexosaminidase A, which comprises an αβ heterodimer. There are no effective treatments for these diseases; however, various strategies aimed at restoring β-hexosaminidase A have been explored. Here, we produced a modified human hexosaminidase subunit β (HexB), which we have termed mod2B, composed of homodimeric β subunits that contain amino acid sequences from the α subunit that confer GM2 ganglioside–degrading activity and protease resistance. We also developed fluorescent probes that allow visualization of endocytosis of mod2B via mannose 6-phosphate receptors and delivery of mod2B to lysosomes in GM2 gangliosidosis models. In addition, we applied imaging mass spectrometry to monitor efficacy of this approach in Sandhoff disease model mice. Following i.c.v. administration, mod2B was widely distributed and reduced accumulation of GM2, asialo-GM2, and bis(monoacylglycero)phosphate in brain regions including the hypothalamus, hippocampus, and cerebellum. Moreover, mod2B administration markedly improved motor dysfunction and a prolonged lifespan in Sandhoff disease mice. Together, the results of our study indicate that mod2B has potential for intracerebrospinal fluid enzyme replacement therapy and should be further explored as a gene therapy for GM2 gangliosidoses.

Authors

Keisuke Kitakaze, Yasumichi Mizutani, Eiji Sugiyama, Chikako Tasaki, Daisuke Tsuji, Nobuo Maita, Takatsugu Hirokawa, Daisuke Asanuma, Mako Kamiya, Kohei Sato, Mitsutoshi Setou, Yasuteru Urano, Tadayasu Togawa, Akira Otaka, Hitoshi Sakuraba, Kohji Itoh

×

Astrocytes are central in the pathomechanisms of vanishing white matter
Stephanie Dooves, … , Vivi M. Heine, Marjo S. van der Knaap
Stephanie Dooves, … , Vivi M. Heine, Marjo S. van der Knaap
Published March 14, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83908.
View: Text | PDF

Astrocytes are central in the pathomechanisms of vanishing white matter

  • Text
  • PDF
Abstract

Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected; however, the mechanisms of VWM development remain unclear. Here, we used VWM mouse models, patients’ tissue, and cell cultures to investigate whether astrocytes or oligodendrocytes are the primary affected cell type. We generated 2 mouse models with mutations (Eif2b5Arg191His/Arg191His and Eif2b4Arg484Trp/Arg484Trp) that cause severe VWM in humans and then crossed these strains to develop mice with various mutation combinations. Phenotypic severity was highly variable and dependent on genotype, reproducing the clinical spectrum of human VWM. In all mutant strains, impaired maturation of white matter astrocytes preceded onset and paralleled disease severity and progression. Bergmann glia and retinal Müller cells, nonforebrain astrocytes that have not been associated with VWM, were also affected, and involvement of these cells was confirmed in VWM patients. In coculture, VWM astrocytes secreted factors that inhibited oligodendrocyte maturation, whereas WT astrocytes allowed normal maturation of VWM oligodendrocytes. These studies demonstrate that astrocytes are central in VWM pathomechanisms and constitute potential therapeutic targets. Importantly, astrocytes should also be considered in the pathophysiology of other white matter disorders.

Authors

Stephanie Dooves, Marianna Bugiani, Nienke L. Postma, Emiel Polder, Niels Land, Stephen T. Horan, Anne-Lieke F. van Deijk, Aleid van de Kreeke, Gerbren Jacobs, Caroline Vuong, Jan Klooster, Maarten Kamermans, Joke Wortel, Maarten Loos, Lisanne E. Wisse, Gert C. Scheper, Truus E.M. Abbink, Vivi M. Heine, Marjo S. van der Knaap

×

Dose-escalation study of octanoic acid in patients with essential tremor
Bernhard Voller, … , Dietrich Haubenberger, Mark Hallett
Bernhard Voller, … , Dietrich Haubenberger, Mark Hallett
Published February 29, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83621.
View: Text | PDF

Dose-escalation study of octanoic acid in patients with essential tremor

  • Text
  • PDF
Abstract

BACKGROUND. Recently, 1-octanol has been shown to have efficacy in treating patients with essential tremor (ET). The primary metabolite of 1-octanol is octanoic acid (OA), which is now thought to be the active substance that mediates tremor suppression. Our aim was to describe the maximum tolerated dose (MTD) of oral OA in patients with ET and assess the pharmacokinetics (PK) and pharmacodynamics (PD) profile of OA.

METHODS. The MTD was studied using an open-label, single-ascending 3 + 3 dose–escalation design. Predefined single doses ranged from 8 to 128 mg/kg, with grade 2 adverse events (AEs) defined as dose-limiting toxicity. Tremor was assessed using accelerometry, digital spiral analysis, and a standard clinical rating scale at baseline and up to 600 minutes after intake. Safety assessments and PK sampling were also performed.

RESULTS. Dose-limiting toxicity was not reached. The most frequent AE was mild abdominal discomfort. Exposure (AUC) increased linearly with the dose. Secondary efficacy measures suggested a dose-dependent reduction of tremor. Accordingly, a single unified PK/PD model with an effect compartment and sigmoid maximum effect (Emax) response could be built that accounted well for the time profiles of plasma concentrations as well as effects on tremor severity across the 5 dose levels.

CONCLUSION. Although our trial did not reach an MTD, a dose-dependent effect was demonstrated in the PK/PD model as well as in secondary efficacy outcomes. Future studies are needed to explore the safety in higher dose ranges and to confirm dose-dependent efficacy in a placebo-controlled design.

TRIAL REGISTRATION. Clinicaltrials.gov NCT01468948

FUNDING. NINDS Intramural Research Program; TG Therapeutics Inc.

Authors

Bernhard Voller, Emily Lines, Gayle McCrossin, Sule Tinaz, Codrin Lungu, George Grimes, Judith Starling, Gopal Potti, Peter Buchwald, Dietrich Haubenberger, Mark Hallett

×
  • ← Previous
  • 1
  • 2
  • …
  • 39
  • 40
  • 41
  • …
  • 64
  • 65
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts