Painful signals are transmitted by mutisynaptic glutamatergic pathways. Their first synapse between primary nociceptors and excitatory spinal interneurons gates sensory load. Glutamate release herein is orchestrated by Ca2+ sensor proteins with neuronal calcium-binding protein 2 (NECAB2) being particularly abundant. However, neither the importance of NECAB2+ neuronal contingents in dorsal root ganglia (DRG) and spinal cord nor function-determination by NECAB2 has been defined. A combination of histochemistry and single-cell RNA-seq showed NECAB2 in small/medium-sized C- and Aδ D-hair low threshold mechanoreceptors in DRG, as well as in protein kinase γ-positive excitatory spinal interneurons. NECAB2 was downregulated by peripheral nerve injury, offering the hypothesis that NECAB2 loss-of-funtion could limit pain sensation. Indeed, Necab2–/– mice reached a pain-free state significantly faster after peripheral inflammation than wild-type littermates. Genetic access to transiently-activated neurons revealed that a mediodorsal cohort of NECAB2+ neurons mediates inflammatory pain in mouse spinal dorsal horn. Here, besides dampening excitatory transmission in spinal interneurons, NECAB2 limited pronociceptive brain-derived neurotrophic factor release from sensory afferents. Hox8b-dependent reinstatement of NECAB2 expression in Necab2–/– mice then demonstrated that spinal/DRG NECAB2 alone could control inflammation-induced sensory hyperensitivity. Overall, we identify NECAB2 as a critical component of pro-nociceptive pain signaling whose inactivation offers substantial pain relief.
Ming-Dong Zhang, Jie Su, Csaba Adori, Valentina Cinquina, Katarzyna Malenczyk, Fatima Girach, Changgeng Peng, Patrik Ernfors, Peter Löw, Lotta Borgius, Ole Kiehn, Masahiko Watanabe, Mathias Uhlén, Nicholas Mitsios, Jan Mulder, Tibor Harkany, Tomas Hökfelt
Skeletal muscle has emerged as a critical, disease-relevant target tissue in spinal and bulbar muscular atrophy, a degenerative disorder of the neuromuscular system caused by a CAG/polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. Here, we used RNA-Seq to identify pathways that are disrupted in diseased muscle using AR113Q knock-in mice. This analysis unexpectedly identified significantly diminished expression of numerous ubiquitin-proteasome pathway genes in AR113Q muscle, encoding approximately 30% of proteasome subunits and 20% of E2 ubiquitin conjugases. These changes were age-, hormone- and glutamine length-dependent and arose due to a toxic gain-of-function conferred by the mutation. Moreover, altered gene expression was associated with decreased level of the proteasome transcription factor NRF1 and its activator DDI2 and resulted in diminished proteasome activity. Ubiquitinated ADRM1 was detected in AR113Q muscle, indicating the occurrence of stalled proteasomes in mutant mice. Finally, diminished expression of Drosophila orthologues of NRF1 or ADRM1 promoted the accumulation of polyQ AR protein and increased toxicity. Collectively, these data indicate that AR113Q muscle develops progressive proteasome dysfunction that leads to the impairment of quality control and the accumulation of polyQ AR protein, key features that contribute to the age-dependent onset and progression of this disorder.
Samir R. Nath, Zhigang Yu, Theresa A. Gipson, Gregory B. Marsh, Eriko Yoshidome, Diane M. Robins, Sokol V. Todi, David E. Housman, Andrew P. Lieberman
DEP domain–containing 5 protein (DEPDC5) is a repressor of the recently recognized amino acid–sensing branch of the mTORC1 pathway. So far, its function in the brain remains largely unknown. Germline loss-of-function mutations in DEPDC5 have emerged as a major cause of familial refractory focal epilepsies, with case reports of sudden unexpected death in epilepsy (SUDEP). Remarkably, a fraction of patients also develop focal cortical dysplasia (FCD), a neurodevelopmental cortical malformation. We therefore hypothesized that a somatic second-hit mutation arising during brain development may support the focal nature of the dysplasia. Here, using postoperative human tissue, we provide the proof of concept that a biallelic 2-hit — brain somatic and germline — mutational mechanism in DEPDC5 causes focal epilepsy with FCD. We discovered a mutation gradient with a higher rate of mosaicism in the seizure-onset zone than in the surrounding epileptogenic zone. Furthermore, we demonstrate the causality of a Depdc5 brain mosaic inactivation using CRISPR-Cas9 editing and in utero electroporation in a mouse model recapitulating focal epilepsy with FCD and SUDEP-like events. We further unveil a key role of Depdc5 in shaping dendrite and spine morphology of excitatory neurons. This study reveals promising therapeutic avenues for treating drug-resistant focal epilepsies with mTORC1-targeting molecules.
Théo Ribierre, Charlotte Deleuze, Alexandre Bacq, Sara Baldassari, Elise Marsan, Mathilde Chipaux, Giuseppe Muraca, Delphine Roussel, Vincent Navarro, Eric Leguern, Richard Miles, Stéphanie Baulac
The ability of the Cav1 channel inhibitor isradipine to slow the loss of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons and the progression of Parkinson’s disease (PD) is being tested in a phase 3 human clinical trial. But it is unclear whether and how chronic isradipine treatment will benefit SNc DA neurons in vivo. To pursue this question, isradipine was given systemically to mice at doses that achieved low nanomolar concentrations in plasma, near those achieved in patients. This treatment diminished cytosolic Ca2+ oscillations in SNc DA neurons without altering autonomous spiking or expression of Ca2+ channels, an effect mimicked by selectively knocking down expression of Cav1.3 channel subunits. Treatment also lowered mitochondrial oxidant stress, reduced a high basal rate of mitophagy, and normalized mitochondrial mass — demonstrating that Cav1 channels drive mitochondrial oxidant stress and turnover in vivo. Thus, chronic isradipine treatment remodeled SNc DA neurons in a way that should not only diminish their vulnerability to mitochondrial challenges, but to autophagic stress as well.
Jaime N. Guzman, Ema Ilijic, Ben Yang, Javier Sanchez-Padilla, David Wokosin, Dan Galtieri, Jyothisri Kondapalli, Paul T. Schumacker, D. James Surmeier
Spinal muscular atrophy (SMA), a degenerative motor neuron (MN) disease caused by loss of functional SMN protein due to SMN1 gene mutations, is a leading cause of infant mortality. Increasing SMN levels ameliorates the disease phenotype and is unanimously accepted as a therapeutic approach for SMA patients. The ubiquitin/proteasome system is known to regulate SMN protein levels; however whether autophagy controls SMN levels remains poorly explored. Here we show that SMN protein is degraded by autophagy. Pharmacological and genetic inhibition of autophagy increase SMN levels, while induction of autophagy decreases SMN. SMN degradation occurs via its interaction with the autophagy adapter p62/SQSTM1. We also show that SMA neurons display reduced autophagosome clearance, increased p62/ubiquitinated protein levels, and hyperactivated mTORC1 signaling. Importantly, reducing p62 levels markedly increases SMN and its binding partner gemin2, promotes MN survival and extends lifespan in fly and mouse SMA models revealing p62 as a new potential therapeutic target to treat SMA.
Natalia Rodriguez-Muela, Andrey Parkhitko, Tobias Grass, Rebecca M. Gibbs, Erika M. Norabuena, Norbert Perrimon, Rajat Singh, Lee L. Rubin
Complications of diabetes affect tissues throughout body, including central nervous system. Epidemiological studies show that diabetic patients have increased risk of depression, anxiety, age-related cognitive decline and Alzheimer’s disease. Mice lacking insulin receptor in brain or on hypothalamic neurons display an array of metabolic abnormalities, however, the role of insulin action on astrocytes and neurobehaviors remains less well-studied. Here, we demonstrate that astrocytes are a direct insulin target in the brain and that knockout of IR on astrocytes causes increased anxiety and depressive-like behaviors in mice. This can be reproduced in part by deletion of IR on astrocytes in the nucleus accumbens. At a molecular level, loss of insulin signaling in astrocytes impaired tyrosine phosphorylation of Munc18c. This led to decreased exocytosis of ATP from astrocytes, resulting in decreased purinergic signaling on dopaminergic neurons. These reductions contributed to decreased dopamine release from brain slices. Central administration of ATP analogues could reverse depressive-like behaviors in mice with astrocyte IR knockout. Thus, astrocytic insulin signaling plays an important role in dopaminergic signaling, providing a potential mechanism by which astrocytic insulin action may contribute to increased rates of depression in people with diabetes, obesity and other insulin resistant states.
Weikang Cai, Chang Xue, Masaji Sakaguchi, Masahiro Konishi, Alireza Shirazian, Heather A. Ferris, Mengyao Li, Ruichao Yu, Andre Kleinridders, Emmanuel N. Pothos, C. Ronald Kahn
Cerebral white matter injury (WMI) persistently disrupts myelin regeneration by oligodendrocyte progenitor cells (OPCs). We identified a specific bioactive hyaluronan fragment (bHAf) that downregulates myelin gene expression and chronically blocks OPC maturation and myelination via a tolerance-like mechanism that dysregulates pro-myelination signaling via AKT. Desensitization of AKT occurs via TLR4 but not TLR2 or CD44. OPC differentiation was selectively blocked by bHAf in a maturation-dependent fashion at the late OPC (preOL) stage by a noncanonical TLR4/TRIF pathway that induced persistent activation of the FoxO3 transcription factor downstream of AKT. Activated FoxO3 selectively localized to oligodendrocyte lineage cells in white matter lesions from human preterm neonates and adults with multiple sclerosis. FoxO3 constraint of OPC maturation was bHAf dependent, and involved interactions at the FoxO3 and MBP promoters with the chromatin remodeling factor Brg1 and the transcription factor Olig2, which regulate OPC differentiation. WMI has adapted an immune tolerance–like mechanism whereby persistent engagement of TLR4 by bHAf promotes an OPC niche at the expense of myelination by engaging a FoxO3 signaling pathway that chronically constrains OPC differentiation.
Taasin Srivastava, Parham Diba, Justin M. Dean, Fatima Banine, Daniel Shaver, Matthew Hagen, Xi Gong, Weiping Su, Ben Emery, Daniel L. Marks, Edward N. Harris, Bruce Baggenstoss, Paul H. Weigel, Larry S. Sherman, Stephen A. Back
Activation of non-neuronal microglia is thought to play a causal role in spinal processing of neuropathic pain. To specifically investigate microglia-mediated effects in a model of neuropathic pain and overcome methodological limitations of previous approaches exploring microglia function upon nerve injury, we selectively ablated resident microglia by intracerebroventricular (icv) ganciclovir infusion into male CD11b-HSVTK transgenic mice, which was followed by a rapid, complete and persistent (23 weeks) repopulation of the CNS by peripheral myeloid cells. In repopulated mice that underwent sciatic nerve injury, we observed a normal response to mechanical stimuli, but an absence of thermal hypersensitivity ipsilateral to the injured nerve. Furthermore, we found that neuronal expression of calcitonin gene-related peptide (CGRP), which is a marker of neurons essential for heat responses, was diminished in the dorsal horn of the spinal cord in repopulated mice. These findings demonstrate distinct mechanisms for heat and mechanical hypersensitivity, highlighting a crucial contribution of CNS myeloid cells in the facilitation of noxious heat.
Stefanie Kälin, Kelly R. Miller, Roland E. Kälin, Marina Jendrach, Christian Witzel, Frank L. Heppner
Rasmussen’s encephalitis (RE) is a chronic inflammatory brain disorder that causes frequent seizures and unilateral hemispheric atrophy with progressive neurological deficits. Hemispherectomy remains the only treatment that leads to seizure freedom for this refractory epileptic syndrome. The absence of an animal model of disease has been a major obstacle hampering the development of effective therapies. Here, we describe an experimental mouse model that shares several clinical and pathological features with the human disease. Immunodeficient mice injected with peripheral blood mononuclear cells from RE patients and monitored by video electroencephalography developed severe seizures of cortical origin and showed intense astrogliosis and accumulation of human IFN-γ– and granzyme B–expressing T lymphocytes in the brain compared with mice injected with immune cells from control subjects. We also provide evidence for the efficacy of α4 integrin blockade, an approved therapy for the treatment of multiple sclerosis and Crohn’s disease, in reducing inflammatory markers associated with RE in the CNS. This model holds promise as a valuable tool for understanding the pathology of RE and for developing patient-tailored experimental therapeutics.
Hania Kebir, Lionel Carmant, François Fontaine, Kathie Béland, Ciprian M. Bosoi, Nathalie T. Sanon, Jorge I. Alvarez, Sébastien Desgent, Camille L. Pittet, David Hébert, Marie-Josée Langlois, Rose-Marie Rébillard, Dang K. Nguyen, Cécile Cieuta-Walti, Gregory L. Holmes, Howard P. Goodkin, John R. Mytinger, Mary B. Connolly, Alexandre Prat, Elie Haddad
The apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor for late-onset Alzheimer disease (LOAD). There is compelling evidence that apoE influences Alzheimer disease (AD) in large part by affecting amyloid β (Aβ) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown. Herein, we tested whether anti–human apoE antibodies can decrease Aβ pathology in mice producing both human Aβ and apoE4, and investigated the mechanism underlying these effects. We utilized APPPS1-21 mice crossed to apoE4-knockin mice expressing human apoE4 (APPPS1-21/APOE4). We discovered an anti–human apoE antibody, anti–human apoE 4 (HAE-4), that specifically recognizes human apoE4 and apoE3 and preferentially binds nonlipidated, aggregated apoE over the lipidated apoE found in circulation. HAE-4 also binds to apoE in amyloid plaques in unfixed brain sections and in living APPPS1-21/APOE4 mice. When delivered centrally or by peripheral injection, HAE-4 reduced Aβ deposition in APPPS1-21/APOE4 mice. Using adeno-associated virus to express 2 different full-length anti–apoE antibodies in the brain, we found that HAE antibodies decreased amyloid accumulation, which was dependent on Fcγ receptor function. These data support the hypothesis that a primary mechanism for apoE-mediated plaque formation may be a result of apoE aggregation, as preferentially targeting apoE aggregates with therapeutic antibodies reduces Aβ pathology and may represent a selective approach to treat AD.
Fan Liao, Aimin Li, Monica Xiong, Nga Bien-Ly, Hong Jiang, Yin Zhang, Mary Beth Finn, Rosa Hoyle, Jennifer Keyser, Katheryn B. Lefton, Grace O. Robinson, Javier Remolina Serrano, Adam P. Silverman, Jing L. Guo, Jennifer Getz, Kirk Henne, Cheryl E.G. Leyns, Gilbert Gallardo, Jason D. Ulrich, Patrick M. Sullivan, Eli Paul Lerner, Eloise Hudry, Zachary K. Sweeney, Mark S. Dennis, Bradley T. Hyman, Ryan J. Watts, David M. Holtzman