Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neuroscience

  • 649 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 35
  • 36
  • 37
  • …
  • 64
  • 65
  • Next →
Bone marrow drives central nervous system regeneration after radiation injury
Jorg Dietrich, … , Amar Sahay, David T. Scadden
Jorg Dietrich, … , Amar Sahay, David T. Scadden
Published December 4, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI90647.
View: Text | PDF | Corrigendum

Bone marrow drives central nervous system regeneration after radiation injury

  • Text
  • PDF
Abstract

Nervous system injury is a frequent result of cancer therapy involving cranial irradiation, leaving patients with marked memory and other neurobehavioral disabilities. Here, we report an unanticipated link between bone marrow and brain in the setting of radiation injury. Specifically, we demonstrate that bone marrow–derived monocytes and macrophages are essential for structural and functional repair mechanisms, including regeneration of cerebral white matter and improvement in neurocognitive function. Using a granulocyte-colony stimulating factor (G-CSF) receptor knockout mouse model in combination with bone marrow cell transplantation, MRI, and neurocognitive functional assessments, we demonstrate that bone marrow–derived G-CSF–responsive cells home to the injured brain and are critical for altering neural progenitor cells and brain repair. Additionally, compared with untreated animals, animals that received G-CSF following radiation injury exhibited enhanced functional brain repair. Together, these results demonstrate that, in addition to its known role in defense and debris removal, the hematopoietic system provides critical regenerative drive to the brain that can be modulated by clinically available agents.

Authors

Jorg Dietrich, Ninib Baryawno, Naema Nayyar, Yannis K. Valtis, Betty Yang, Ina Ly, Antoine Besnard, Nicolas Severe, Karin U. Gustafsson, Ovidiu C. Andronesi, Tracy T. Batchelor, Amar Sahay, David T. Scadden

×

PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models
Hien Tran Zhao, … , Eric E. Swayze, Holly B. Kordasiewicz
Hien Tran Zhao, … , Eric E. Swayze, Holly B. Kordasiewicz
Published December 4, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI96499.
View: Text | PDF

PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models

  • Text
  • PDF
Abstract

Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by duplication of peripheral myelin protein 22 (PMP22) and is the most common hereditary peripheral neuropathy. CMT1A is characterized by demyelination and axonal loss, which underlie slowed motor nerve conduction velocity (MNCV) and reduced compound muscle action potentials (CMAP) in patients. There is currently no known treatment for this disease. Here, we show that antisense oligonucleotides (ASOs) effectively suppress PMP22 mRNA in affected nerves in 2 murine CMT1A models. Notably, initiation of ASO treatment after disease onset restored myelination, MNCV, and CMAP almost to levels seen in WT animals. In addition to disease-associated gene expression networks that were restored with ASO treatment, we also identified potential disease biomarkers through transcriptomic profiling. Furthermore, we demonstrated that reduction of PMP22 mRNA in skin biopsies from ASO-treated rats is a suitable biomarker for evaluating target engagement in response to ASO therapy. These results support the use of ASOs as a potential treatment for CMT1A and elucidate potential disease and target engagement biomarkers for use in future clinical trials.

Authors

Hien Tran Zhao, Sagar Damle, Karli Ikeda-Lee, Steven Kuntz, Jian Li, Apoorva Mohan, Aneeza Kim, Gene Hung, Mark A. Scheideler, Steven S. Scherer, John Svaren, Eric E. Swayze, Holly B. Kordasiewicz

×

S-sulfocysteine/NMDA receptor–dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency
Avadh Kumar, … , Guenter Schwarz, Abdel Ali Belaidi
Avadh Kumar, … , Guenter Schwarz, Abdel Ali Belaidi
Published November 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89885.
View: Text | PDF

S-sulfocysteine/NMDA receptor–dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency

  • Text
  • PDF
Abstract

Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.

Authors

Avadh Kumar, Borislav Dejanovic, Florian Hetsch, Marcus Semtner, Debora Fusca, Sita Arjune, Jose Angel Santamaria-Araujo, Aline Winkelmann, Scott Ayton, Ashley I. Bush, Peter Kloppenburg, Jochen C. Meier, Guenter Schwarz, Abdel Ali Belaidi

×

Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury
Izhar Livne-Bar, … , John G. Flanagan, Jeremy M. Sivak
Izhar Livne-Bar, … , John G. Flanagan, Jeremy M. Sivak
Published November 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI77398.
View: Text | PDF

Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury

  • Text
  • PDF
Abstract

Astrocytes perform critical non–cell autonomous roles following CNS injury that involve either neurotoxic or neuroprotective effects. Yet the nature of potential prosurvival cues has remained unclear. In the current study, we utilized the close interaction between astrocytes and retinal ganglion cells (RGCs) in the eye to characterize a secreted neuroprotective signal present in retinal astrocyte conditioned medium (ACM). Rather than a conventional peptide neurotrophic factor, we identified a prominent lipid component of the neuroprotective signal through metabolomics screening. The lipoxins LXA4 and LXB4 are small lipid mediators that act locally to dampen inflammation, but they have not been linked directly to neuronal actions. Here, we determined that LXA4 and LXB4 are synthesized in the inner retina, but their levels are reduced following injury. Injection of either lipoxin was sufficient for neuroprotection following acute injury, while inhibition of key lipoxin pathway components exacerbated injury-induced damage. Although LXA4 signaling has been extensively investigated, LXB4, the less studied lipoxin, emerged to be more potent in protection. Moreover, LXB4 neuroprotection was different from that of established LXA4 signaling, and therapeutic LXB4 treatment was efficacious in a chronic model of the common neurodegenerative disease glaucoma. Together, these results identify a potential paracrine mechanism that coordinates neuronal homeostasis and inflammation in the CNS.

Authors

Izhar Livne-Bar, Jessica Wei, Hsin-Hua Liu, Samih Alqawlaq, Gah-Jone Won, Alessandra Tuccitto, Karsten Gronert, John G. Flanagan, Jeremy M. Sivak

×

Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior
Yan Li, … , Shengxi Wu, Lize Xiong
Yan Li, … , Shengxi Wu, Lize Xiong
Published October 23, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94455.
View: Text | PDF

Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior

  • Text
  • PDF
Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children. Although an imbalance of excitatory and inhibitory inputs has been proposed as contributing to this disorder, the mechanisms underlying this highly heterogeneous disease remain largely unknown. Here, we show that N-myc downstream-regulated gene 2 (NDRG2) deficiency is involved in the development of ADHD in both mice and humans. Ndrg2-knockout (Ndrg2–/–) mice exhibited ADHD-like symptoms characterized by attention deficits, hyperactivity, impulsivity, and impaired memory. Furthermore, interstitial glutamate levels and excitatory transmission were markedly increased in the brains of Ndrg2–/– mice due to reduced astroglial glutamate clearance. We developed an NDRG2 peptide that rescued astroglial glutamate clearance and reduced excitatory glutamate transmission in NDRG2-deficient astrocytes. Additionally, NDRG2 peptide treatment rescued ADHD-like hyperactivity in the Ndrg2–/– mice, while routine methylphenidate treatment had no effect on hyperactivity in these animals. Finally, children who were heterozygous for rs1998848, a SNP in NDRG2, had a higher risk of ADHD than children who were homozygous for rs1998848. Our results indicate that NDRG2 deficiency leads to ADHD phenotypes and that impaired astroglial glutamate clearance, a mechanism distinct from the well-established dopamine deficit hypothesis for ADHD, underlies the resultant behavioral abnormalities.

Authors

Yan Li, Anqi Yin, Xin Sun, Ming Zhang, Jianfang Zhang, Ping Wang, Rougang Xie, Wen Li, Ze Fan, Yuanyuan Zhu, Han Wang, Hailong Dong, Shengxi Wu, Lize Xiong

×

Mutations in the netrin-1 gene cause congenital mirror movements
Aurélie Méneret, … , Emmanuel Roze, David Markie
Aurélie Méneret, … , Emmanuel Roze, David Markie
Published September 25, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI95442.
View: Text | PDF

Mutations in the netrin-1 gene cause congenital mirror movements

  • Text
  • PDF
Abstract

Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.

Authors

Aurélie Méneret, Elizabeth A. Franz, Oriane Trouillard, Thomas C. Oliver, Yvrick Zagar, Stephen P. Robertson, Quentin Welniarz, R.J. MacKinlay Gardner, Cécile Gallea, Myriam Srour, Christel Depienne, Christine L. Jasoni, Caroline Dubacq, Florence Riant, Jean-Charles Lamy, Marie-Pierre Morel, Raphael Guérois, Jessica Andreani, Coralie Fouquet, Mohamed Doulazmi, Marie Vidailhet, Guy A. Rouleau, Alexis Brice, Alain Chédotal, Isabelle Dusart, Emmanuel Roze, David Markie

×

Peripherally derived FGF21 promotes remyelination in the central nervous system
Mariko Kuroda, … , Hideki Mochizuki, Toshihide Yamashita
Mariko Kuroda, … , Hideki Mochizuki, Toshihide Yamashita
Published August 21, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94337.
View: Text | PDF

Peripherally derived FGF21 promotes remyelination in the central nervous system

  • Text
  • PDF
Abstract

Demyelination in the central nervous system (CNS) leads to severe neurological deficits that can be partially reversed by spontaneous remyelination. Because the CNS is isolated from the peripheral milieu by the blood-brain barrier, remyelination is thought to be controlled by the CNS microenvironment. However, in this work we found that factors derived from peripheral tissue leak into the CNS after injury and promote remyelination in a murine model of toxin-induced demyelination. Mechanistically, leakage of circulating fibroblast growth factor 21 (FGF21), which is predominantly expressed by the pancreas, drives proliferation of oligodendrocyte precursor cells (OPCs) through interactions with β-klotho, an essential coreceptor of FGF21. We further confirmed that human OPCs expressed β-klotho and proliferated in response to FGF21 in vitro. Vascular barrier disruption is a common feature of many CNS disorders; thus, our findings reveal a potentially important role for the peripheral milieu in promoting CNS regeneration.

Authors

Mariko Kuroda, Rieko Muramatsu, Noriko Maedera, Yoshihisa Koyama, Machika Hamaguchi, Harutoshi Fujimura, Mari Yoshida, Morichika Konishi, Nobuyuki Itoh, Hideki Mochizuki, Toshihide Yamashita

×

Prolonged human neural stem cell maturation supports recovery in injured rodent CNS
Paul Lu, … , Eileen Staufenberg, Mark H. Tuszynski
Paul Lu, … , Eileen Staufenberg, Mark H. Tuszynski
Published August 21, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92955.
View: Text | PDF

Prolonged human neural stem cell maturation supports recovery in injured rodent CNS

  • Text
  • PDF
Abstract

Neural stem cells (NSCs) differentiate into both neurons and glia, and strategies using human NSCs have the potential to restore function following spinal cord injury (SCI). However, the time period of maturation for human NSCs in adult injured CNS is not well defined, posing fundamental questions about the design and implementation of NSC-based therapies. This work assessed human H9 NSCs that were implanted into sites of SCI in immunodeficient rats over a period of 1.5 years. Notably, grafts showed evidence of continued maturation over the entire assessment period. Markers of neuronal maturity were first expressed 3 months after grafting. However, neurogenesis, neuronal pruning, and neuronal enlargement continued over the next year, while total graft size remained stable over time. Axons emerged early from grafts in very high numbers, and half of these projections persisted by 1.5 years. Mature astrocyte markers first appeared after 6 months, while more mature oligodendrocyte markers were not present until 1 year after grafting. Astrocytes slowly migrated from grafts. Notably, functional recovery began more than 1 year after grafting. Thus, human NSCs retain an intrinsic human rate of maturation, despite implantation into the injured rodent spinal cord, yet they support delayed functional recovery, a finding of great importance in planning human clinical trials.

Authors

Paul Lu, Steven Ceto, Yaozhi Wang, Lori Graham, Di Wu, Hiromi Kumamaru, Eileen Staufenberg, Mark H. Tuszynski

×

Epiregulin and EGFR interactions are involved in pain processing
Loren J. Martin, … , Jeffrey S. Mogil, Luda Diatchenko
Loren J. Martin, … , Jeffrey S. Mogil, Luda Diatchenko
Published August 7, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI87406.
View: Text | PDF

Epiregulin and EGFR interactions are involved in pain processing

  • Text
  • PDF
Abstract

The EGFR belongs to the well-studied ErbB family of receptor tyrosine kinases. EGFR is activated by numerous endogenous ligands that promote cellular growth, proliferation, and tissue regeneration. In the present study, we have demonstrated a role for EGFR and its natural ligand, epiregulin (EREG), in pain processing. We show that inhibition of EGFR with clinically available compounds strongly reduced nocifensive behavior in mouse models of inflammatory and chronic pain. EREG-mediated activation of EGFR enhanced nociception through a mechanism involving the PI3K/AKT/mTOR pathway and matrix metalloproteinase-9. Moreover, EREG application potentiated capsaicin-induced calcium influx in a subset of sensory neurons. Both the EGFR and EREG genes displayed a genetic association with the development of chronic pain in several clinical cohorts of temporomandibular disorder. Thus, EGFR and EREG may be suitable therapeutic targets for persistent pain conditions.

Authors

Loren J. Martin, Shad B. Smith, Arkady Khoutorsky, Claire A. Magnussen, Alexander Samoshkin, Robert E. Sorge, Chulmin Cho, Noosha Yosefpour, Sivaani Sivaselvachandran, Sarasa Tohyama, Tiffany Cole, Thang M. Khuong, Ellen Mir, Dustin G. Gibson, Jeffrey S. Wieskopf, Susana G. Sotocinal, Jean Sebastien Austin, Carolina B. Meloto, Joseph H. Gitt, Christos Gkogkas, Nahum Sonenberg, Joel D. Greenspan, Roger B. Fillingim, Richard Ohrbach, Gary D. Slade, Charles Knott, Ronald Dubner, Andrea G. Nackley, Alfredo Ribeiro-da-Silva, G. Gregory Neely, William Maixner, Dmitri V. Zaykin, Jeffrey S. Mogil, Luda Diatchenko

×

Astrocytic tight junctions control inflammatory CNS lesion pathogenesis
Sam Horng, … , Candice Chapouly, Gareth R. John
Sam Horng, … , Candice Chapouly, Gareth R. John
Published July 24, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI91301.
View: Text | PDF

Astrocytic tight junctions control inflammatory CNS lesion pathogenesis

  • Text
  • PDF
Abstract

Lesions and neurologic disability in inflammatory CNS diseases such as multiple sclerosis (MS) result from the translocation of leukocytes and humoral factors from the vasculature, first across the endothelial blood-brain barrier (BBB) and then across the astrocytic glia limitans (GL). Factors secreted by reactive astrocytes open the BBB by disrupting endothelial tight junctions (TJs), but the mechanisms that control access across the GL are unknown. Here, we report that in inflammatory lesions, a second barrier composed of reactive astrocyte TJs of claudin 1 (CLDN1), CLDN4, and junctional adhesion molecule A (JAM-A) subunits is induced at the GL. In a human coculture model, CLDN4-deficient astrocytes were unable to control lymphocyte segregation. In models of CNS inflammation and MS, mice with astrocyte-specific Cldn4 deletion displayed exacerbated leukocyte and humoral infiltration, neuropathology, motor disability, and mortality. These findings identify a second inducible barrier to CNS entry at the GL. This barrier may be therapeutically targetable in inflammatory CNS disease.

Authors

Sam Horng, Anthony Therattil, Sarah Moyon, Alexandra Gordon, Karla Kim, Azeb Tadesse Argaw, Yuko Hara, John N. Mariani, Setsu Sawai, Per Flodby, Edward D. Crandall, Zea Borok, Michael V. Sofroniew, Candice Chapouly, Gareth R. John

×
  • ← Previous
  • 1
  • 2
  • …
  • 35
  • 36
  • 37
  • …
  • 64
  • 65
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts