Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neuroscience

  • 674 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 67
  • 68
  • Next →
The NaV1.5 auxiliary subunit FGF13 modulates channels by regulating membrane cholesterol independent of channel binding
Aravind R. Gade, Mattia Malvezzi, Lala Tanmoy Das, Maiko Matsui, Cheng-I J. Ma, Keon Mazdisnian, Steven O. Marx, Frederick R. Maxfield, Geoffrey S. Pitt
Aravind R. Gade, Mattia Malvezzi, Lala Tanmoy Das, Maiko Matsui, Cheng-I J. Ma, Keon Mazdisnian, Steven O. Marx, Frederick R. Maxfield, Geoffrey S. Pitt
View: Text | PDF

The NaV1.5 auxiliary subunit FGF13 modulates channels by regulating membrane cholesterol independent of channel binding

  • Text
  • PDF
Abstract

Fibroblast growth factor homologous factors (FHFs) bind to the cytoplasmic carboxy terminus of voltage-gated sodium channels (VGSCs) and modulate channel function. Variants in FHFs or VGSCs perturbing that bimolecular interaction are associated with arrhythmias. Like some channel auxiliary subunits, FHFs exert additional cellular regulatory roles, but whether these alternative roles affect VGSC regulation is unknown. Using a separation-of-function strategy, we show that a structurally guided, binding incompetent mutant FGF13 (the major FHF in mouse heart) confers complete regulation of VGSC steady-state inactivation (SSI), the canonical effect of FHFs. In cardiomyocytes isolated from Fgf13 knockout mice, expression of the mutant FGF13 completely restores wild-type regulation of SSI. FGF13 regulation of SSI derives from effects on local accessible membrane cholesterol, which is unexpectedly polarized and concentrated in cardiomyocytes at the intercalated disc (ID) where most VGSCs localize. Fgf13 knockout eliminates the polarized cholesterol distribution and causes loss of VGSCs from the ID. Moreover, we show that the previously described FGF13-dependent stabilization of VGSC currents at elevated temperatures depends on the cholesterol mechanism. These results provide new insights into how FHFs affect VGSCs and alter the canonical model by which channel auxiliary subunits exert influence.

Authors

Aravind R. Gade, Mattia Malvezzi, Lala Tanmoy Das, Maiko Matsui, Cheng-I J. Ma, Keon Mazdisnian, Steven O. Marx, Frederick R. Maxfield, Geoffrey S. Pitt

×

Distinct nucleus accumbens neural pathways underlie separate behavioral features of chronic pain and comorbid depression
Di Liu, Fang-Xia Xu, Zhuang Yu, Xiao-Jing Huang, Ya-Bing Zhu, Li-Juan Wang, Chen-Wei Wu, Xu Zhang, Jun-Li Cao, Jinbao Li
Di Liu, Fang-Xia Xu, Zhuang Yu, Xiao-Jing Huang, Ya-Bing Zhu, Li-Juan Wang, Chen-Wei Wu, Xu Zhang, Jun-Li Cao, Jinbao Li
View: Text | PDF

Distinct nucleus accumbens neural pathways underlie separate behavioral features of chronic pain and comorbid depression

  • Text
  • PDF
Abstract

The comorbidity of depressive symptoms in chronic pain has been recognized as a key health issue. However, whether discrete circuits underlie behavioral subsets of chronic pain and comorbid depression has not been addressed. Here, we report that dopamine 2 (D2) receptor–expressing medium spiny neurons in the nucleus accumbens medial shell (mNAcSh) mediate pain hypersensitivity and depression-like behaviors in mice after nerve injury. Two separate neural pathways mediate different symptoms. The glutamatergic inputs from the anteromedial thalamic nucleus to mNAcSh D2 neurons that innervated orexin-expressing neurons in the lateral hypothalamic area contributed to pain regulation. In contrast, the lateral septum GABAergic inputs to mNAcSh D2 neurons that disinhibit the ventral pallidum glutamatergic neurons mediated depression-like behaviors. These findings indicate the functional significance of heterogeneous mNAcSh D2 neurons and their neural pathways, providing a perspective for symptom-specific treatments of chronic pain and comorbid depression.

Authors

Di Liu, Fang-Xia Xu, Zhuang Yu, Xiao-Jing Huang, Ya-Bing Zhu, Li-Juan Wang, Chen-Wei Wu, Xu Zhang, Jun-Li Cao, Jinbao Li

×

Elesclomol-copper therapy improves neurodevelopment in two children with Menkes disease
Elena Godoy-Molina, Natalia L. Serrano, Aquilina Jiménez-González, Miquel Villaronga, Rosa M. Marqués Pérez-Bryan, Rubén Varela-Fernández, Stephanie Lotz-Esquivel, Alba Hevia Tuñón, Prachi P. Trivedi, Nina Horn, Joseph F. Standing, Víctor Mangas-Sanjuan, Mercè Capdevila, Aurora Mateos, Denis Broun, Svetlana Lutsenko, Ines Medina-Rivera, Rafael Artuch, Cristina Jou, Mònica Roldán, Pedro Arango-Sancho, Mónica Saez-Villafañe, Juan J. Ortiz-de-Urbina, Angela Pieras-López, Marta Duero, Rosa Farré, Jordi Pijuan, Janet Hoenicka, James C. Sacchettini, Michael J. Petris, Vishal M. Gohil, Francesc Palau
Elena Godoy-Molina, Natalia L. Serrano, Aquilina Jiménez-González, Miquel Villaronga, Rosa M. Marqués Pérez-Bryan, Rubén Varela-Fernández, Stephanie Lotz-Esquivel, Alba Hevia Tuñón, Prachi P. Trivedi, Nina Horn, Joseph F. Standing, Víctor Mangas-Sanjuan, Mercè Capdevila, Aurora Mateos, Denis Broun, Svetlana Lutsenko, Ines Medina-Rivera, Rafael Artuch, Cristina Jou, Mònica Roldán, Pedro Arango-Sancho, Mónica Saez-Villafañe, Juan J. Ortiz-de-Urbina, Angela Pieras-López, Marta Duero, Rosa Farré, Jordi Pijuan, Janet Hoenicka, James C. Sacchettini, Michael J. Petris, Vishal M. Gohil, Francesc Palau
View: Text | PDF

Elesclomol-copper therapy improves neurodevelopment in two children with Menkes disease

  • Text
  • PDF
Abstract

Authors

Elena Godoy-Molina, Natalia L. Serrano, Aquilina Jiménez-González, Miquel Villaronga, Rosa M. Marqués Pérez-Bryan, Rubén Varela-Fernández, Stephanie Lotz-Esquivel, Alba Hevia Tuñón, Prachi P. Trivedi, Nina Horn, Joseph F. Standing, Víctor Mangas-Sanjuan, Mercè Capdevila, Aurora Mateos, Denis Broun, Svetlana Lutsenko, Ines Medina-Rivera, Rafael Artuch, Cristina Jou, Mònica Roldán, Pedro Arango-Sancho, Mónica Saez-Villafañe, Juan J. Ortiz-de-Urbina, Angela Pieras-López, Marta Duero, Rosa Farré, Jordi Pijuan, Janet Hoenicka, James C. Sacchettini, Michael J. Petris, Vishal M. Gohil, Francesc Palau

×

Sensory neuron–expressed FGF13 controls nociceptive signaling in diabetic neuropathy models
Aditya K. Singh, et al.
Aditya K. Singh, et al.
View: Text | PDF

Sensory neuron–expressed FGF13 controls nociceptive signaling in diabetic neuropathy models

  • Text
  • PDF
Abstract

Nociception involves complex signaling, yet intrinsic mechanisms bidirectionally regulating this process remain unexplored. Here, we show that the fibroblast growth factor 13 (FGF13)/Nav1.7 protein–protein interaction (PPI) complex bidirectionally modulates nociception, and that the FGF13/Nav1.7 ratio is upregulated in type 2 diabetic neuropathy (T2DN). PW164, an FGF13/Nav1.7 channel C-terminal tail domain (CTD) PPI interface inhibitor, which reduces complex assembly, selectively suppressed Na+ currents sensitized by capsaicin-induced activation of TRPV1 channels in human induced pluripotent stem cell–derived (hIPSC-derived) sensory neurons and inhibited mechanical and thermal hyperalgesia in mice. FGF13 silencing mimics PW164 activity in culture and in vivo. Conversely, ZL192, an FGF13 ligand that stabilizes FGF13/Nav1.7 CTD assembly, sensitized Na+ currents in hIPSC-derived sensory neurons and exerted pronociceptive behavioral responses in mice. ZL192’s effects were abrogated by FGF13 silencing in culture and in vivo and recapitulated by FGF13 overexpression. In a model of T2DN, PW164 injection reduced mechanical hyperalgesia locally and contralaterally without systemic side effects. In donor-derived dorsal root ganglia neurons, FGF13 and Nav1.7 proteins colocalized, and the FGF13/Nav1.7 protein ratio was upregulated in patients with T2DN. Lastly, we found that SCN9A variant V1831F, associated with painless diabetic neuropathy, abolished PW164-directed modulation of the FGF13/Nav1.7 PPI interface. Thus, FGF13 is a rheostat of nociception and promising therapeutic target for diabetic neuropathy pain.

Authors

Aditya K. Singh, Matteo Bernabucci, Nolan M. Dvorak, Zahra Haghighijoo, Jessica Di Re, Nana A. Goode, Feni K. Kadakia, Laura A. Maile, Olumarotimi O. Folorunso, Paul A. Wadsworth, Cynthia M. Tapia, Pingyuan Wang, Jigong Wang, Haiying Chen, Yu Xue, Jully Singh, Kali Hankerd, Isaac J. Gamez, Makenna Kager, Vincent Truong, Patrick Walsh, Stephanie I. Shiers, Nishka Kuttanna, Hanyue Liao, Margherita Marchi, Erika Salvi, Ilaria D’Amato, Daniela D’Amico, Parsa Arman, Catharina G. Faber, Rayaz A. Malik, Marina de Tommaso, Dan Ziegler, Krishna Rajarathnam, Thomas A. Green, Peter M. Grace, Matthew R. Sapio, Michael J. Iadarola, Gregory D. Cuny, Diana S. Chow, Giuseppe Lauria Pinter, Steve Davidson, Dustin P. Green, Jun-Ho La, Jin Mo Chung, Jia Zhou, Theodore J. Price, Elizabeth Salisbury, Subo Yuan, Fernanda Laezza

×

Age-dependent brain responses to mechanical stress determine resilience in a chronic lymphatic drainage impairment model
Zachary H. Gursky, Zohaib Nisar Khan, Sunil Koundal, Ankita Bhardwaj, Joaquin Caceres Melgarejo, Kaiming Xu, Xinan Chen, Hung-Mo Lin, Xianfeng Gu, Hedok Lee, Jonathan Kipnis, Yoav Dori, Allen Tannenbaum, Laura Santambrogio, Helene Benveniste
Zachary H. Gursky, Zohaib Nisar Khan, Sunil Koundal, Ankita Bhardwaj, Joaquin Caceres Melgarejo, Kaiming Xu, Xinan Chen, Hung-Mo Lin, Xianfeng Gu, Hedok Lee, Jonathan Kipnis, Yoav Dori, Allen Tannenbaum, Laura Santambrogio, Helene Benveniste
View: Text | PDF

Age-dependent brain responses to mechanical stress determine resilience in a chronic lymphatic drainage impairment model

  • Text
  • PDF
Abstract

The outflow of 'dirty' brain fluids from the glymphatic system drains via the meningeal lymphatic vessels to the lymph nodes in the neck, primarily the deep cervical lymph nodes (dcLN). However, it is unclear whether dcLN drainage is essential for normal cerebral homeostasis. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computational fluid dynamics, we studied the impact of long-term mechanical stress from compromised dcLN drainage on brain solute and fluid outflow in anesthetized rats. We found that in young, but not middle-aged rats, impairment of dcLN drainage was linked to moderately increased intracranial pressure and the emergence of extracranial peri-venous drainage, with no evidence of hydrocephalus at any age. Surprisingly, both age groups showed enhanced brain solute clearance despite reduced glymphatic influx. CSF proteomic analysis revealed cellular stress in the form of low-grade inflammation, and up-regulation of pathways associated with neurodegeneration and blood brain barrier leakage in the rats with impaired lymphatic drainage. Our findings highlight that dcLN drainage is indeed a prerequisite for normal cerebral homeostasis in the rat and reveal the brain’s age-dependent compensatory responses to chronic impairment of its lymphatic drainage pathways.

Authors

Zachary H. Gursky, Zohaib Nisar Khan, Sunil Koundal, Ankita Bhardwaj, Joaquin Caceres Melgarejo, Kaiming Xu, Xinan Chen, Hung-Mo Lin, Xianfeng Gu, Hedok Lee, Jonathan Kipnis, Yoav Dori, Allen Tannenbaum, Laura Santambrogio, Helene Benveniste

×

Mutations in spliceosomal gene SNW1 cause neurodevelopment disorders with microcephaly
Lei Ji, et al.
Lei Ji, et al.
View: Text | PDF

Mutations in spliceosomal gene SNW1 cause neurodevelopment disorders with microcephaly

  • Text
  • PDF
Abstract

The spliceosome is a critical cellular machinery responsible for pre-mRNA splicing, essential for the proper expression of genes. Mutations in its core components are increasingly linked to neurodevelopmental disorders, such as primary microcephaly. Here, we investigated the role of SNW1, a spliceosomal protein, in splicing integrity and neurodevelopment. We identified nine heterozygous mutations in the SNW1 gene in patients presenting with primary microcephaly. These mutations impaired SNW1's interactions with core spliceosomal proteins, leading to defective RNA splicing and reduced protein functionality. Using Drosophila melanogaster and human embryonic stem cell-derived cerebral organoids models, we demonstrated that SNW1 depletion resulted in significant reductions in neural stem cell proliferation and increased apoptosis. RNA-sequencing revealed disrupted alternative splicing, especially skipping exons, and altered expression of neurodevelopment-associated genes (CENPE, MEF2C, and NRXN2). Our findings provide crucial insights into the molecular mechanisms by which SNW1 dysfunction contributes to neurodevelopmental disorders and underscore the importance of proper spliceosome function in brain development.

Authors

Lei Ji, Jin Yan, Nicole A. Losurdo, Hua Wang, Liangjie Liu, Keyi Li, Zhen Liu, Zhenming Guo, Jing Xu, Adriana Bibo, Decheng Ren, Ke Yang, Yingying Luo, Fengping Yang, Gui Wang, Zhenglong Xiang, Yuan Wang, Huaizhe Zhan, Hu Pan, Juanli Hu, Jianmin Zhong, Rami Abou Jamra, Pia Zacher, Luciana Musante, Flavio Faletra, Paola Costa, Caterina Zanus, Nathalie Couque, Lyse Ruaud, Anna Maria Cueto-González, Hector San Nicolas Fernández, Eduardo Tizzano, Núria Martínez Gil, Xiaorong Liu, Weiping Liao, Layal Abi Farraj, Alden Y. Huang, Liying Zhang, Aparna Murali, Esther Schmuel, Christina S. Han, Kayla King, Weiyue Gu, Pengchao Wang, Kai Li, Nichole Link, Guang He, Shan Bian, Xiao Mao

×

A haploinsufficiency restoration strategy corrects neurobehavioral deficits in Nf1+/– mice
Su Jung Park, Jodi L. Lukkes, Ka-Kui Chan, Hayley P. Drozd, Callie B. Burgin, Shaomin Qian, Morgan McKenzie Sullivan, Cesar Gabriel Guevara, Nolen Cunningham, Stephanie Arenas, Makenna A. Collins, Jacob Zucker, JinHee Won, Abbi Smith, Li Jiang, Dana K. Mitchell, Steven D. Rhodes, Steven P. Angus, D. Wade Clapp
Su Jung Park, Jodi L. Lukkes, Ka-Kui Chan, Hayley P. Drozd, Callie B. Burgin, Shaomin Qian, Morgan McKenzie Sullivan, Cesar Gabriel Guevara, Nolen Cunningham, Stephanie Arenas, Makenna A. Collins, Jacob Zucker, JinHee Won, Abbi Smith, Li Jiang, Dana K. Mitchell, Steven D. Rhodes, Steven P. Angus, D. Wade Clapp
View: Text | PDF

A haploinsufficiency restoration strategy corrects neurobehavioral deficits in Nf1+/– mice

  • Text
  • PDF
Abstract

Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutations of the NF1 tumor suppressor gene resulting in the loss of function of neurofibromin, a GTPase-activating protein (GAP) for Ras. While the malignant manifestations of NF1 are associated with loss of heterozygosity of the residual WT allele, the nonmalignant neurodevelopmental sequelae, including autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) are prevalent morbidities that occur in the setting of neurofibromin haploinsufficiency. We reasoned that augmenting endogenous levels of WT neurofibromin could serve as a potential therapeutic strategy to correct the neurodevelopmental manifestations of NF1. Here, we used a combination of genetic screening and genetically engineered murine models to identify a role for the F-box protein FBXW11 as a regulator of neurofibromin degradation. Disruption of Fbxw11, through germline mutation or targeted genetic manipulation in the nucleus accumbens, increased neurofibromin levels, suppressed Ras-dependent ERK phosphorylation, and corrected social learning deficits and impulsive behaviors in male Nf1+/– mice. Our results demonstrate that preventing the degradation of neurofibromin is a feasible and effective approach to ameliorate the neurodevelopmental phenotypes in a haploinsufficient disease model.

Authors

Su Jung Park, Jodi L. Lukkes, Ka-Kui Chan, Hayley P. Drozd, Callie B. Burgin, Shaomin Qian, Morgan McKenzie Sullivan, Cesar Gabriel Guevara, Nolen Cunningham, Stephanie Arenas, Makenna A. Collins, Jacob Zucker, JinHee Won, Abbi Smith, Li Jiang, Dana K. Mitchell, Steven D. Rhodes, Steven P. Angus, D. Wade Clapp

×

Mitofusin 2 controls mitochondrial and synaptic dynamics of suprachiasmatic VIP neurons and related circadian rhythms
Milan Stoiljkovic, Jae Eun Song, Hee-kyung Hong, Heiko Endle, Luis Varela, Jonatas Catarino, Xiao-Bing Gao, Zong-Wu Liu, Peter Sotonyi, Sabrina Diano, Jonathan Cedernaes, Joseph T. Bass, Tamas L. Horvath
Milan Stoiljkovic, Jae Eun Song, Hee-kyung Hong, Heiko Endle, Luis Varela, Jonatas Catarino, Xiao-Bing Gao, Zong-Wu Liu, Peter Sotonyi, Sabrina Diano, Jonathan Cedernaes, Joseph T. Bass, Tamas L. Horvath
View: Text | PDF

Mitofusin 2 controls mitochondrial and synaptic dynamics of suprachiasmatic VIP neurons and related circadian rhythms

  • Text
  • PDF
Abstract

Sustaining the strong rhythmic interactions between cellular adaptations and environmental cues has been posited as essential for preserving the physiological and behavioral alignment of an organism to the proper phase of the daily light/dark (LD) cycle. Here, we demonstrate that mitochondria and synaptic input organization of suprachiasmatic (SCN) vasoactive intestinal peptide–expressing (VIP-expressing) neurons showed circadian rhythmicity. Perturbed mitochondrial dynamics achieved by conditional ablation of the fusogenic protein mitofusin 2 (Mfn2) in VIP neurons caused disrupted circadian oscillation in mitochondria and synapses in SCN VIP neurons, leading to desynchronization of entrainment to the LD cycle in Mfn2-deficient mice that resulted in an advanced phase angle of their locomotor activity onset, alterations in core body temperature, and sleep-wake amount and architecture. Our data provide direct evidence of circadian SCN clock machinery dependence on high-performance, Mfn2-regulated mitochondrial dynamics in VIP neurons for maintaining the coherence in daily biological rhythms of the mammalian organism.

Authors

Milan Stoiljkovic, Jae Eun Song, Hee-kyung Hong, Heiko Endle, Luis Varela, Jonatas Catarino, Xiao-Bing Gao, Zong-Wu Liu, Peter Sotonyi, Sabrina Diano, Jonathan Cedernaes, Joseph T. Bass, Tamas L. Horvath

×

Cingulate retinoic acid signaling regulates neuropathic pain and comorbid anxiodepression via extracellular matrix homeostasis
Zhen-Zhen Li, Wan-Neng Liu, Ke-Xin Liu, Zhi-Wei Dou, Rui Zhao, Yun Chen, Meng-Meng Wang, Tao-Zhi Wang, Fei Wang, Wen-Juan Han, Wen-Guang Chu, Xing-Xing Zheng, Rou-Gang Xie, Hua Yuan, Xiao-Fan Jiang, Xiao-Long Sun, Ceng Luo, Shengxi Wu
Zhen-Zhen Li, Wan-Neng Liu, Ke-Xin Liu, Zhi-Wei Dou, Rui Zhao, Yun Chen, Meng-Meng Wang, Tao-Zhi Wang, Fei Wang, Wen-Juan Han, Wen-Guang Chu, Xing-Xing Zheng, Rou-Gang Xie, Hua Yuan, Xiao-Fan Jiang, Xiao-Long Sun, Ceng Luo, Shengxi Wu
View: Text | PDF

Cingulate retinoic acid signaling regulates neuropathic pain and comorbid anxiodepression via extracellular matrix homeostasis

  • Text
  • PDF
Abstract

Neuropathic pain is often comorbid with affective disorders. Synaptic plasticity in anterior cingulate cortex (ACC) is assumed to be a crucial interface for pain perception and emotion. Laminin β1 (LAMB1), a key element of extracellular matrix (ECM) in ACC was recently revealed to convey extracellular alterations to intracellular synaptic plasticity and underlie neuropathic pain and aversive emotion. However, it remains elusive what triggers activity-dependent changes of LAMB1 and ECM remodeling after nerve injury. Here, we uncovered a key role of retinoic acid (RA)/RARB signaling in neuropathic pain and associated anxiodepression via regulation of ECM homeostasis. We showed that nerve injury reduced RA level in the serum and ACC in mice and human, which brought about downregulation of its corresponding receptor, RARB. Overexpressing RARB relieved pain hypersensitivity and comorbid anxiodepression, while silencing RARB exacerbated pain sensitivity and induced anxiodepression. Further mechanistic analysis revealed that RARB maintained ECM homeostasis via transcriptional regulation of LAMB1, reversing abnormal synaptic plasticity and eventually improved neuropathic pain and aversive emotion. Taken together with our previous study, we revealed an intracellular-extracellular-intracellular feedforward regulatory network in modulating pain plasticity. Moreover, we identified cingulate RA/RARB signaling as a promising therapeutic target for treatment of neuropathic pain and associated anxiodepression.

Authors

Zhen-Zhen Li, Wan-Neng Liu, Ke-Xin Liu, Zhi-Wei Dou, Rui Zhao, Yun Chen, Meng-Meng Wang, Tao-Zhi Wang, Fei Wang, Wen-Juan Han, Wen-Guang Chu, Xing-Xing Zheng, Rou-Gang Xie, Hua Yuan, Xiao-Fan Jiang, Xiao-Long Sun, Ceng Luo, Shengxi Wu

×

Nemo-like kinase disrupts nuclear import and drives TDP43 mislocalization in ALS
Michael E. Bekier II, Emile S. Pinarbasi, Gopinath Krishnan, Jack J. Mesojedec, Madelaine Hurley, Harisankar Harikumar Sheela, Catherine A. Collins, Layla T. Ghaffari, Martina de Majo, Erik M. Ullian, Mark Koontz, Sarah Coleman, Xingli Li, Elizabeth M.H. Tank, Jacob Waksmacki, Fen-Biao Gao, Sami J. Barmada
Michael E. Bekier II, Emile S. Pinarbasi, Gopinath Krishnan, Jack J. Mesojedec, Madelaine Hurley, Harisankar Harikumar Sheela, Catherine A. Collins, Layla T. Ghaffari, Martina de Majo, Erik M. Ullian, Mark Koontz, Sarah Coleman, Xingli Li, Elizabeth M.H. Tank, Jacob Waksmacki, Fen-Biao Gao, Sami J. Barmada
View: Text | PDF

Nemo-like kinase disrupts nuclear import and drives TDP43 mislocalization in ALS

  • Text
  • PDF
Abstract

Cytoplasmic TDP43 mislocalization and aggregation are pathological hallmarks of amyotrophic lateral sclerosis (ALS). However, the initial cellular insults that lead to TDP43 mislocalization remain unclear. In this study, we demonstrate that Nemo-like kinase (NLK) — a proline-directed serine/threonine kinase — promotes the mislocalization of TDP43 and other RNA-binding proteins by disrupting nuclear import. NLK levels are selectively elevated in neurons exhibiting TDP43 mislocalization in ALS patient tissues, while genetic reduction of NLK reduces toxicity in human neuron models of ALS. Our findings suggest that NLK is a promising therapeutic target for neurodegenerative diseases.

Authors

Michael E. Bekier II, Emile S. Pinarbasi, Gopinath Krishnan, Jack J. Mesojedec, Madelaine Hurley, Harisankar Harikumar Sheela, Catherine A. Collins, Layla T. Ghaffari, Martina de Majo, Erik M. Ullian, Mark Koontz, Sarah Coleman, Xingli Li, Elizabeth M.H. Tank, Jacob Waksmacki, Fen-Biao Gao, Sami J. Barmada

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 67
  • 68
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts