Facioscapulohumeral muscular dystrophy (FSHD) is a genetic muscle disease caused by ectopic expression of the toxic protein DUX4, resulting in muscle weakness. However, the mechanism by which DUX4 exerts its toxicity remains unclear. In this study, we observed abnormal iron accumulation in muscles of patients with FSHD and in muscle-specific DUX4-expressing (DUX4-Tg) mice. Treatment with iron chelators, an iron-deficient diet, and genetic modifications inhibiting intracellular uptake of iron did not improve but rather exacerbated FSHD pathology in DUX4-Tg mice. Unexpectedly, however, iron supplementation, either from a high-iron diet or intravenous iron administration, resulted in remarkable improvement in grip strength and running performance in DUX4-Tg mice. Iron supplementation suppressed abnormal iron accumulation and the ferroptosis-related pathway involving increased lipid peroxidation in DUX4-Tg muscle. Muscle-specific DUX4 expression led to retinal vasculopathy, a part of FSHD pathology, which was prevented by iron administration. Furthermore, high-throughput compound screening of the ferroptosis pathway identified drug candidates including Ferrostatin-1 (Fer-1), a potent inhibitor of lipid peroxidation. Treatment with Fer-1 dramatically improved physical function in DUX4-Tg mice. Our findings demonstrate that DUX4-provoked toxicity is involved in the activation of the ferroptosis-related pathway and that supplementary iron could be a promising and readily available therapeutic option for FSHD.
Kodai Nakamura, Huascar-Pedro Ortuste-Quiroga, Naoki Horii, Shin Fujimaki, Toshiro Moroishi, Keiichi I. Nakayama, Shinjiro Hino, Yoshihiko Saito, Ichizo Nishino, Yusuke Ono
The dystrophin-glycoprotein complex (DGC) is composed of peripheral and integral membrane proteins at the muscle cell membrane that link the extracellular matrix with the intracellular cytoskeleton. While it is well-established that genetic mutations that disrupt the structural integrity of DGC result in numerous muscular dystrophies, the three-dimensional structure of the complex has remained elusive. Two recent elegant cryoEM structures of DGC illuminate its molecular architecture and reveal the unique structural placement of sarcospan (SSPN) within the complex. SSPN, a 25-kDa tetraspanin-like protein, anchors beta-dystroglycan to the beta-, gamma- and delta-sarcoglycan trimer, supporting biochemical studies that SSPN is a core element for DGC assembly and stabilization. Here, we advance these studies by revealing that SSPN provides scaffolding in gamma-sarcoglycanopathies enabling substitution of gamma-sarcoglycan by its homolog, zeta-sarcoglycan, leading to the structural integrity of the DGC and prevention of limb-girdle muscular dystrophy R5. Three-dimensional modeling reveals that zeta-sarcoglycan preserves protein-protein interactions with the sarcospan, sarcoglycans, dystroglycan, and dystrophin. The structural integrity of the complex maintains myofiber attachment to the extracellular matrix and protect the cell membrane from contraction-induced damage. These findings demonstrate that sarcospan prevents limb-girdle muscular dystrophy R5 by remodeling of the sarcoglycan complex composition.
Ekaterina I. Mokhonova, Daniel Helzer, Ravinder Malik, Hafsa Mamsa, Jackson Walker, Mark Maslanka, Tess S. Fleser, Mohammad H. Afsharinia, Shiheng Liu, Johan Holmberg, Z. Hong Zhou, Eric J. Deeds, Kirk C. Hansen, Elizabeth M. McNally, Rachelle H. Crosbie
The neuromuscular junction (NMJ), synapse between the motor neuron terminal and a skeletal muscle fiber is crucial, throughout life, in maintaining the reliable neurotransmission required for functional motricity. Disruption of this system leads to neuromuscular disorders, such as auto-immune myasthenia gravis (MG), the most common form of NMJ diseases. MG is caused by autoantibodies directed mostly against the acetylcholine receptor (AChR) or the muscle-specific kinase MuSK. Several studies report immunoreactivity to the Frizzled-like cysteine-rich Wnt-binding domain of MuSK (CRD) in patients, although the pathogenicity of the antibodies involved remains unknown. We showed here that the immunoreactivity to MuSK CRD induced by the passive transfer of anti-MuSKCRD antibodies in mice led to typical MG symptoms, characterized by a loss of body weight and a locomotor deficit. The functional and morphological integrity of the NMJ was compromised with a progressive decay of neurotransmission and disruption of the structure of pre- and post-synaptic compartments. We found that anti-MuSKCRD antibodies completely abolished Agrin-mediated AChR clustering by decreasing the Lrp4-MuSK interaction. These results provide the first demonstration of the role of the MuSK CRD in MG pathogenesis and improve our understanding of the underlying pathophysiological mechanisms.
Marius Halliez, Steve Cottin, Axel You, Céline Buon, Antony Grondin, Léa S. Lippens, Megane Lemaitre, Jérome Ezan, Charlotte Isch, Yann Rufin, Mireille Montcouquiol, Nathalie Sans, Bertrand Fontaine, Julien Messéant, Rozen Le Panse, Laure Strochlic
Gene replacement therapies mediated by adeno-associated viral (AAV) vectors represent a promising approach for treating genetic diseases. However, their modest packaging capacity (~4.7 kb) remains an important constraint and significantly limits their application for genetic disorders involving large genes. A prominent example is Duchenne muscular dystrophy (DMD), whose protein product dystrophin is generated from an 11.2 kb segment of the DMD mRNA. Here, we explored methods that enable efficient expression of full-length dystrophin via triple AAV co-delivery. This method exploits the protein trans-splicing mechanism mediated by split inteins. We identified a combination of efficient and specific split intein pairs that enables the reconstitution of full-length dystrophin from three dystrophin fragments. We show that systemic delivery of low doses of the myotropic AAVMYO1 in mdx4cv mice leads to efficient expression of full-length dystrophin in the hindlimb, diaphragm, and heart muscles. Notably, muscle morphology and physiology were significantly improved in triple AAV-treated mdx4cv mice versus saline-treated controls. This method shows the feasibility of expressing large proteins from several fragments that are delivered using low doses of myotropic AAV vectors. It can be adapted to other large genes involved in disorders for which gene replacement remains challenged by the modest AAV cargo capacity.
Hichem Tasfaout, Timothy S. McMillen, Theodore R. Reyes, Christine L. Halbert, Rong Tian, Michael Regnier, Jeffrey S. Chamberlain
Collagen VI–related disorders (COL6-RDs) are a group of rare muscular dystrophies caused by pathogenic variants in collagen VI genes (COL6A1, COL6A2, and COL6A3). Collagen type VI is a heterotrimeric, microfibrillar component of the muscle extracellular matrix (ECM), predominantly secreted by resident fibroadipogenic precursor cells in skeletal muscle. The absence or mislocalization of collagen VI in the ECM underlies the noncell-autonomous dysfunction and dystrophic changes in skeletal muscle with a yet elusive direct mechanistic link between the ECM and myofiber dysfunction. Here, we conducted a comprehensive natural history and outcome study in a mouse model of COL6-RDs (Col6a2–/– mice) using standardized (TREAT-NMD) functional, histological, and physiological parameters. Notably, we identify a conspicuous dysregulation of the TGF-β pathway early in the disease process and propose that the collagen VI–deficient matrix is not capable of regulating the dynamic TGF-β bioavailability both at baseline and in response to muscle injury. Thus, we propose a new mechanism for pathogenesis of the disease that links the ECM regulation of TGF-β with downstream skeletal muscle abnormalities, paving the way for the development and validation of therapeutics that target this pathway.
Payam Mohassel, Hailey Hearn, Jachinta Rooney, Yaqun Zou, Kory Johnson, Gina Norato, Matthew A. Nalls, Pomi Yun, Tracy Ogata, Sarah Silverstein, David A. Sleboda, Thomas J. Roberts, Daniel B. Rifkin, Carsten G. Bönnemann
BACKGROUND. Adipose tissue-derived endotrophin, a peptide cleaved from the α3 chain of collagen VI during fibrogenesis, causes systemic insulin resistance in rodent models. Here, we evaluated the potential importance of endotrophin in regulating whole-body insulin sensitivity in people. METHODS. We evaluated: i) plasma endotrophin concentration, insulin sensitivity (assessed by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled glucose tracer infusion) and adipose tissue expression of genes involved in endotrophin production in three groups of participants that were rigorously stratified by adiposity and insulin sensitivity [lean insulin-sensitive (Lean-IS; n=10), obese insulin-sensitive (Obese-IS; n=10), and obesity insulin-resistant (Obese-IR; n=10)]; ii) plasma endotrophin concentration and insulin sensitivity in 15 people with obesity and type 2 diabetes before and after marked (~18%) weight loss; and iii) the effect of endotrophin on insulin signaling (AKTser473 phosporylation) and insulin action (insulin-stimulated glucose uptake) in primary human skeletal muscle myotubes. RESULTS. Plasma endotrophin progressively increased from the Lean-IS to the Obese-IS to the Obese-IR group, was negatively associated with insulin sensitivity and positively associated with factors involved in adipose tissue endotrophin production, namely adipose tissue gene expression of matrix metalloproteinases and markers of hypoxia, inflammation, and fibrosis. Marked weight loss increased insulin sensitivity in conjunction with a decrease in plasma endotrophin concentration. Endotrophin inhibited insulin insulin-stimulated AKTser473 phosphorylation and insulin-stimulated glucose uptake in myotubes, which was restored by incubation with a neutralizing endotrophin antibody. CONCLUSIONS. These results suggest plasma endotrophin is both a biomarker and cause of whole-body insulin resistance in people with obesity.
Gordon I. Smith, Samuel Klein
Cancer cachexia is a multifactorial condition characterized by skeletal muscle wasting that impairs quality of life and longevity for many cancer patients. A greater understanding of the molecular etiology of this condition is needed for effective therapies to be developed. We performed a quantitative proteomic analysis of skeletal muscle from cachectic pancreatic ductal adenocarcinoma (PDAC) patients and non-cancer controls, followed by immunohistochemical analyses of muscle cross-sections. These data provide evidence of a local inflammatory response in muscles of cachectic PDAC patients, including an accumulation of plasma proteins and recruitment of immune cells into muscle that may promote the pathological remodeling of muscle. Our data further support the complement system as a potential mediator of these processes, which we tested by injecting murine pancreatic cancer cells into wild type (WT) mice, or mice with genetic deletion of the central complement component 3 (C3–/– mice). Compared to WT mice, C3–/– mice showed attenuated tumor-induced muscle wasting and dysfunction and reduced immune cell recruitment and fibrotic remodeling of muscle. These studies demonstrate that complement activation is contributory to the skeletal muscle pathology and dysfunction in PDAC, suggesting that the complement system may possess therapeutic potential in preserving skeletal muscle mass and function.
Andrew C. D'Lugos, Jeremy B. Ducharme, Chandler S. Callaway, Jose G. Trevino, Carl Atkinson, Sarah M. Judge, Andrew R. Judge
Fibrosis of the lower abdominal muscle (LAM) contributes to muscle weakening and inguinal hernia formation, an ailment affecting a noteworthy fifty percent of men by age 75, necessitating surgical correction as the singular therapy. Despite its prevalence, the mechanisms driving LAM fibrosis and hernia development remain poorly understood. Utilizing a humanized mouse model that replicates elevated skeletal muscle tissue estrogen concentrations akin to aging men, we identified estrogen receptor alpha (ESR1) as a key driver of LAM fibroblast proliferation, extracellular matrix deposition, and hernia formation. Fibroblast-specific ESR1 ablation effectively prevented muscle fibrosis and herniation, while pharmacological ESR1 inhibition with fulvestrant reversed hernias and restored normal muscle architecture. Multiomic analyses on in vitro LAM fibroblasts unveiled an estrogen/ESR1-mediated activation of a distinct profibrotic cistrome and gene expression signature, concordant with observations in inguinal hernia tissues in human males. Our findings hold significant promise for prospective medical interventions targeting fibrotic conditions and presenting non-surgical avenues for addressing inguinal hernias.
Tanvi Potluri, Tianming You, Ping Yin, John S. Coon V, Jonah J. Stulberg, Yang Dai, David J Escobar, Richard L. Lieber, Hong Zhao, Serdar E. Bulun
Background: Myotonic dystrophy type 1 (DM1) is a multisystemic, CTG repeat expansion disorder characterized by a slow, progressive decline in skeletal muscle function. A biomarker correlating RNA mis-splicing, the core pathogenic disease mechanism, and muscle performance is crucial for assessing response to disease-modifying interventions. We evaluated the Myotonic Dystrophy Splice Index (SI), a composite RNA splicing biomarker incorporating 22 disease-specific events, as a potential biomarker of DM1 muscle weakness. Methods: Total RNA sequencing of tibialis anterior biopsies from 58 DM1 participants and 33 unaffected/disease controls was used to evaluate RNA splicing events across the disease spectrum. Targeted RNA sequencing was used to derive the SI from biopsies collected at baseline (n = 52) or a 3-month (n = 37) follow-up visit along with clinical measures of muscle performance. Results: The SI demonstrated significant associations with measures of muscle strength and ambulation, including ankle dorsiflexion strength (ADF) and 10-meter run/fast walk (Pearson r = -0.719 and -0.680, respectively). The SI was relatively stable over 3-months (ICC = 0.863). Latent-class analysis identified three DM1 subgroups stratified by baseline SI (SIMild, SIModerate, SISevere); SIModerate individuals had a significant increase in the SI over 3-months. Multiple linear regression modeling revealed that baseline ADF and SI were predictive of strength at 3-months (adjusted R² = 0.830). Conclusion: The SI is a reliable biomarker that captures associations of RNA mis-splicing with physical strength and mobility and has prognostic utility to predict future function, establishing it as a potential biomarker for assessment of therapeutic target engagement. Trial Registration: NCT03981575 Funding: FDA (7R01FD006071), Myotonic Dystrophy Foundation, Wyck Foundation, Muscular Dystrophy Association, Novartis, Dyne, Avidity, PepGen, Takeda, Sanofi Genzyme, Pfizer, Arthex, and Vertex Pharmaceuticals.
Marina Provenzano, Kobe Ikegami, Kameron Bates, Alison Gaynor, Julia M. Hartman, Aileen S. Jones, Amanda Butler, Kiera N. Berggren, Jeanne Dekdebrun, Man Hung, Dana M. Lapato, Michael Kiefer, Charles A. Thornton, Nicholas E. Johnson, Melissa A. Hale
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss. We also showed that the cysteine proteome of skeletal muscle functioned as a redox buffer in WT and mdx muscle during ECCs, but that buffer capacity in mdx muscle was significantly compromised by elevated basal protein oxidation. Finally, chemo-proteomic data suggested that H2S protected several proteins central to muscle contraction against irreversible oxidation through persulfidation-based priming. Our results support a unifying, redox-based mechanism of ECC force loss in mdx muscle.
W. Michael Southern, Erynn E. Johnson, Elizabeth K. Fasbender, Katherine S. Fallon, Courtney L. Cavazos, Dawn A. Lowe, George G. Rodney, James M. Ervasti