The broad immunologic roles of autophagy span innate and adaptive immunity and are often manifested in inflammatory diseases. The immune effects of autophagy partially overlap with its roles in metabolism and cytoplasmic quality control but typically expand further afield to encompass unique immunologic adaptations. One of the best-appreciated manifestations of autophagy is protection against microbial invasion, but this is by no means limited to direct elimination of intracellular pathogens and includes a stratified array of nearly all principal immunologic processes. This Review summarizes the broad immunologic roles of autophagy. Furthermore, it uses the autophagic control of
Vojo Deretic, Tomonori Kimura, Graham Timmins, Pope Moseley, Santosh Chauhan, Michael Mandell
Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies.
Helin Vakifahmetoglu-Norberg, Hong-guang Xia, Junying Yuan
mTOR, a serine/threonine kinase, is a master regulator of cellular metabolism. mTOR regulates cell growth and proliferation in response to a wide range of cues, and its signaling pathway is deregulated in many human diseases. mTOR also plays a crucial role in regulating autophagy. This Review provides an overview of the mTOR signaling pathway, the mechanisms of mTOR in autophagy regulation, and the clinical implications of mTOR inhibitors in disease treatment.
Young Chul Kim, Kun-Liang Guan
Autophagy (“self-eating”) constitutes one of the most spectacular yet subtly regulated phenomena in cell biology. Similarly to cell division, differentiation, and death, autophagy is perturbed in multiple diseases, in that excessive or deficient autophagy may contribute to pathogenesis. Numerous attempts have been launched to identify specific inducers or inhibitors of autophagy and to use them for the therapeutic correction of its deregulation. At present, several major disease categories (including but not limited to age-related, cardiovascular, infectious, neoplastic, neurodegenerative, and metabolic pathologies) are being investigated for pathogenic aberrations in autophagy and their pharmacologic rectification. Driven by promising preclinical results, several clinical trials are exploring autophagy as a therapeutic target.
Guido Kroemer
Fibrotic disorders account for an increasing burden of disease-associated morbidity and mortality worldwide. Although numerous risk factors have been recognized, the etiologies of many of these clinical syndromes have not been identified, and they are often termed idiopathic or cryptogenic. Here, we provide an evolutionary perspective on fibrosis aimed at elucidating its etiopathogenesis. By asking the
Victor J. Thannickal, Yong Zhou, Amit Gaggar, Steven R. Duncan
The past decade has been one of rapid innovation in genome-editing technology. The opportunity now exists for investigators to manipulate virtually any gene in a diverse range of cell types and organisms with targeted nucleases designed with sequence-specific DNA-binding domains. The rapid development of the field has allowed for highly efficient, precise, and now cost-effective means by which to generate human and animal models of disease using these technologies. This review will outline the recent development of genome-editing technology, culminating with the use of CRISPR-Cas9 to generate novel mammalian models of disease. While the road to using this same technology for treatment of human disease is long, the pace of innovation over the past five years and early successes in model systems build anticipation for this prospect.
Rajat M. Gupta, Kiran Musunuru
The collection of bacteria, viruses, and fungi that live in and on the human body, collectively known as the microbiome, has recently emerged as an important factor in human physiology and disease. The gut in particular is a biological niche that is home to a diverse array of microbes that influence nearly all aspects of human biology through their interactions with their host; new technologies are beginning to reveal important aspects of host-microbe interactions. Articles in this Review series address how perturbations of the microbiota, such as through antibiotic use, influence its overall structure and function; how our microbiome influences the impact of infectious agents, such as
Martin J. Blaser
Our group recently discovered that certain dietary nutrients possessing a trimethylamine (TMA) moiety, namely choline/phosphatidylcholine and L-carnitine, participate in the development of atherosclerotic heart disease. A meta-organismal pathway was elucidated involving gut microbiota–dependent formation of TMA and host hepatic flavin monooxygenase 3–dependent (FMO3-dependent) formation of TMA–N-oxide (TMAO), a metabolite shown to be both mechanistically linked to atherosclerosis and whose levels are strongly linked to cardiovascular disease (CVD) risks. Collectively, these studies reveal that nutrient precursors, gut microbiota, and host participants along the meta-organismal pathway elucidated may serve as new targets for the prevention and treatment of CVD.
W.H. Wilson Tang, Stanley L. Hazen
Antibiotics have been a cornerstone of innovation in the fields of public health, agriculture, and medicine. However, recent studies have shed new light on the collateral damage they impart on the indigenous host-associated communities. These drugs have been found to alter the taxonomic, genomic, and functional capacity of the human gut microbiota, with effects that are rapid and sometimes persistent. Broad-spectrum antibiotics reduce bacterial diversity while expanding and collapsing membership of specific indigenous taxa. Furthermore, antibiotic treatment selects for resistant bacteria, increases opportunities for horizontal gene transfer, and enables intrusion of pathogenic organisms through depletion of occupied natural niches, with profound implications for the emergence of resistance. Because these pervasive alterations can be viewed as an uncoupling of mutualistic host-microbe relationships, it is valuable to reconsider antimicrobial therapies in the context of an ecological framework. Understanding the biology of competitive exclusion, interspecies protection, and gene flow of adaptive functions in the gut environment may inform the design of new strategies that treat infections while preserving the ecology of our beneficial constituents.
Sheetal R. Modi, James J. Collins, David A. Relman
The human body comprises fewer host cells than bacterial cells, most of which are obligate anaerobes residing in the gut. The symbiont
Cynthia L. Sears, Abby L. Geis, Franck Housseau
No posts were found with this tag.