HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking
Chang Yeop Han, Chongren Tang, Myriam E. Guevara, Hao Wei, Tomasz Wietecha, Baohai Shao, Savitha Subramanian, Mohamed Omer, Shari Wang, Kevin D. O’Brien, Santica M. Marcovina, Thomas N. Wight, Tomas Vaisar, Maria C. de Beer, Frederick C. de Beer, William R. Osborne, Keith B. Elkon, Alan Chait
Vascular oxidative injury accompanies many common conditions associated with hypertension. In the present study, we employed mouse models with excessive vascular production of ROS (tgsm/p22phox mice, which overexpress the NADPH oxidase subunit p22
Jing Wu, Mohamed A. Saleh, Annet Kirabo, Hana A. Itani, Kim Ramil C. Montaniel, Liang Xiao, Wei Chen, Raymond L. Mernaugh, Hua Cai, Kenneth E. Bernstein, Jörg J. Goronzy, Cornelia M. Weyand, John A. Curci, Natalia R. Barbaro, Heitor Moreno, Sean S. Davies, L. Jackson Roberts II, Meena S. Madhur, David G. Harrison
Lung transplantation is the only viable option for patients suffering from otherwise incurable end-stage pulmonary diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Despite aggressive immunosuppression, acute rejection of the lung allograft occurs in over half of transplant recipients, and the factors that promote lung acceptance are poorly understood. The contribution of lymphatic vessels to transplant pathophysiology remains controversial, and data that directly address the exact roles of lymphatic vessels in lung allograft function and survival are limited. Here, we have shown that there is a marked decline in the density of lymphatic vessels, accompanied by accumulation of low-MW hyaluronan (HA) in mouse orthotopic allografts undergoing rejection. We found that stimulation of lymphangiogenesis with VEGF-C156S, a mutant form of VEGF-C with selective VEGFR-3 binding, alleviates an established rejection response and improves clearance of HA from the lung allograft. Longitudinal analysis of transbronchial biopsies from human lung transplant recipients demonstrated an association between resolution of acute lung rejection and decreased HA in the graft tissue. Taken together, these results indicate that lymphatic vessel formation after lung transplantation mediates HA drainage and suggest that treatments to stimulate lymphangiogenesis have promise for improving graft outcomes.
Ye Cui, Kaifeng Liu, Maria E. Monzon-Medina, Robert F. Padera, Hao Wang, Gautam George, Demet Toprak, Elie Abdelnour, Emmanuel D’Agostino, Hilary J. Goldberg, Mark A. Perrella, Rosanna Malbran Forteza, Ivan O. Rosas, Gary Visner, Souheil El-Chemaly
FOXP3+ Tregs are central for the maintenance of self-tolerance and can be defective in autoimmunity. In multiple sclerosis and type-1 diabetes, dysfunctional self-tolerance is partially mediated by a population of IFNγ-secreting Tregs. It was previously reported that increased NaCl concentrations promote the induction of proinflammatory Th17 cells and that high-salt diets exacerbate experimental models of autoimmunity. Here, we have shown that increasing NaCl, either in vitro or in murine models via diet, markedly impairs Treg function. NaCl increased IFNγ secretion in Tregs, and reducing IFNγ — either by neutralization with anti-IFNγ antibodies or shRNA-mediated knockdown — restored suppressive activity in Tregs. The heightened IFNγ secretion and loss of Treg function were mediated by the serum/glucocorticoid-regulated kinase (SGK1). A high-salt diet also impaired human Treg function and was associated with the induction of IFNγ-secreting Tregs in a xenogeneic graft-versus-host disease model and in adoptive transfer models of experimental colitis. Our results demonstrate a putative role for an environmental factor that promotes autoimmunity by inducing proinflammatory responses in CD4 effector cells and Treg pathways.
Amanda L. Hernandez, Alexandra Kitz, Chuan Wu, Daniel E. Lowther, Donald M. Rodriguez, Nalini Vudattu, Songyan Deng, Kevan C. Herold, Vijay K. Kuchroo, Markus Kleinewietfeld, David A. Hafler
Wound healing is a complex process that is characterized by an initial inflammatory phase followed by a proliferative phase. This transition is a critical regulatory point; however, the factors that mediate this process are not fully understood. Here, we evaluated microRNAs (miRs) in skin wound healing and characterized the dynamic change of the miRNome in human skin wounds. miR-132 was highly upregulated during the inflammatory phase of wound repair, predominantly expressed in epidermal keratinocytes, and peaked in the subsequent proliferative phase. TGF-β1 and TGF-β2 induced miR-132 expression in keratinocytes, and transcriptome analysis of these cells revealed that miR-132 regulates a large number of immune response– and cell cycle–related genes. In keratinocytes, miR-132 decreased the production of chemokines and the capability to attract leukocytes by suppressing the NF-κB pathway. Conversely, miR-132 increased activity of the STAT3 and ERK pathways, thereby promoting keratinocyte growth. Silencing of the miR-132 target heparin-binding EGF-like growth factor (HB-EGF) phenocopied miR-132 overexpression in keratinocytes. Using mouse and human ex vivo wound models, we found that miR-132 blockade delayed healing, which was accompanied by severe inflammation and deficient keratinocyte proliferation. Together, our results indicate that miR-132 is a critical regulator of skin wound healing that facilitates the transition from the inflammatory to the proliferative phase.
Dongqing Li, Aoxue Wang, Xi Liu, Florian Meisgen, Jacob Grünler, Ileana R. Botusan, Sampath Narayanan, Erdem Erikci, Xi Li, Lennart Blomqvist, Lei Du, Andor Pivarcsi, Enikö Sonkoly, Kamal Chowdhury, Sergiu-Bogdan Catrina, Mona Ståhle, Ning Xu Landén
The NF-κB signaling pathway is implicated in various inflammatory diseases, including rheumatoid arthritis (RA); therefore, inhibition of this pathway has the potential to ameliorate an array of inflammatory diseases. Given that NF-κB signaling is critical for many immune cell functions, systemic blockade of this pathway may lead to detrimental side effects. siRNAs coupled with a safe and effective delivery nanoplatform may afford the specificity lacking in systemic administration of small-molecule inhibitors. Here we demonstrated that a melittin-derived cationic amphipathic peptide combined with siRNA targeting the p65 subunit of NF-κB (p5RHH-p65) noncovalently self-assemble into stable nanocomplexes that home to the inflamed joints in a murine model of RA. Specifically, administration of p5RHH-p65 siRNA nanocomplexes abrogated inflammatory cytokine expression and cellular influx into the joints, protected against bone erosions, and preserved cartilage integrity. The p5RHH-p65 siRNA nanocomplexes potently suppressed early inflammatory arthritis without affecting p65 expression in off-target organs or eliciting a humoral response after serial injections. These data suggest that this self-assembling, largely nontoxic platform may have broad utility for the specific delivery of siRNA to target and limit inflammatory processes for the treatment of a variety of diseases.
Hui-fang Zhou, Huimin Yan, Hua Pan, Kirk K. Hou, Antonina Akk, Luke E. Springer, Ying Hu, J. Stacy Allen, Samuel A. Wickline, Christine T.N. Pham
Rheumatoid arthritis–associated (RA-associated) inflammation is mediated through the interaction between RA IgG immune complexes and IgG Fc receptors on immune cells. Polymorphisms within the gene encoding the human IgG Fc receptor IIA (hFcγRIIA) are associated with an increased risk of developing RA. Within the hFcγRIIA intracytoplasmic domain, there are 2 conserved tyrosine residues arranged in a noncanonical immunoreceptor tyrosine–based activation motif (ITAM). Here, we reveal that inhibitory engagement of the hFcγRIIA ITAM either with anti-hFcγRII F(ab′)2 fragments or intravenous hIgG (IVIg) ameliorates RA-associated inflammation, and this effect was characteristic of previously described inhibitory ITAM (ITAMi) signaling for hFcαRI and hFcγRIIIA, but only involves a single tyrosine. In hFcγRIIA-expressing mice, arthritis induction was inhibited following hFcγRIIA engagement. Moreover, hFcγRIIA ITAMi-signaling reduced ROS and inflammatory cytokine production through inhibition of guanine nucleotide exchange factor VAV-1 and IL-1 receptor–associated kinase 1 (IRAK-1), respectively. ITAMi signaling was mediated by tyrosine 304 (Y304) within the hFcγRIIA ITAM, which was required for recruitment of tyrosine kinase SYK and tyrosine phosphatase SHP-1. Anti-hFcγRII F(ab′)2 treatment of inflammatory synovial cells from RA patients inhibited ROS production through induction of ITAMi signaling. These data suggest that shifting constitutive hFcγRIIA-mediated activation to ITAMi signaling could ameliorate RA-associated inflammation.
Sanae Ben Mkaddem, Gilles Hayem, Friederike Jönsson, Elisabetta Rossato, Erwan Boedec, Tarek Boussetta, Jamel El Benna, Pierre Launay, Jean-Michel Goujon, Marc Benhamou, Pierre Bruhns, Renato C. Monteiro
Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease.
Mari Kono, Ana E. Tucker, Jennifer Tran, Jennifer B. Bergner, Ewa M. Turner, Richard L. Proia
Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3–dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor–null (
Norma Adán, Jessica Guzmán-Morales, Maria G. Ledesma-Colunga, Sonia I. Perales-Canales, Andrés Quintanar-Stéphano, Fernando López-Barrera, Isabel Méndez, Bibiana Moreno-Carranza, Jakob Triebel, Nadine Binart, Gonzalo Martínez de la Escalera, Stéphanie Thebault, Carmen Clapp
Current therapies to treat autoimmune disease focus mainly on downstream targets of autoimmune responses, including effector cells and cytokines. A potentially more effective approach would entail targeting autoreactive T cells that initiate the disease cascade and break self tolerance. The murine MHC class Ib molecule Qa-1b (HLA-E in humans) exhibits limited polymorphisms and binds to 2 dominant self peptides: Hsp60p216 and Qdm. We found that peptide-induced expansion of tetramer-binding CD8+ Tregs that recognize Qa-1–Hsp60p216 but not Qa-1–Qdm strongly inhibited collagen-induced arthritis, an animal model of human rheumatoid arthritis. Perforin-dependent elimination of autoreactive follicular Th (TFH) and Th17 cells by CD8+ Tregs inhibited disease development. Infusion of in vitro–expanded CD8+ Tregs increased the efficacy of methotrexate treatment and halted disease progression after clinical onset, suggesting an alternative approach to this first-line treatment. Moreover, infusion of small numbers of Qa-1–Hsp60p216–specific CD8+ Tregs resulted in robust inhibition of autoimmune arthritis, confirming the inhibitory effects of Hsp60p216 peptide immunization. These results suggest that strategies designed to expand Qa-1–restricted (HLA-E–restricted), peptide-specific CD8+ Tregs represent a promising therapeutic approach to autoimmune disorders.
Jianmei W. Leavenworth, Xiaolei Tang, Hye-Jung Kim, Xiaoyang Wang, Harvey Cantor
No posts were found with this tag.